深度学习与计算机视觉学习汇总

原创 2017年01月03日 18:45:18

本人阅读深度学习、计算机视觉等相关文章,以及收集整理的相关资源汇总。


  1. 深度学习(Deep Learning)
  2. 目标检测(Object Detection)
  3. 语义分割(Semantic Segmentation)
  4. 目标追踪(Visual Tracking)
  5. 生成式对抗网络(Generative Adversarial Network)

总结:

  1. 2016年有哪些值得一读的深度学习论文?

注:博客中内容均是作者整理或者做的笔记,转载请注明出处!!! 欢迎讨论学习。

by Dr. Sword.

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

机器学习 深度学习 计算机视觉 资料汇总

Deep Learning(深度学习) ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一 ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):...

深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器

作者: 寒小阳 时间:2015年11月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/49999299 声明:版权所有,转载请注...

深度学习与计算机视觉系列(2)_图像分类与KNN

作者: 寒小阳 时间:2015年11月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/49949535 声明:版权所有,...

深度学习与计算机视觉系列(1)_基础介绍

为了简单易读易懂,这个系列中绝大多数的代码都使用python完成。这里稍微介绍一下python和Numpy/Scipy(python中的科学计算包)的一些基础。 python是一种长得像伪代码,具备...

深度学习在计算机视觉中应用综述

本文是针对中国科学院计算所山世光教授于2017年1月7日于北京师范大学所做的《深度学习在计算机视觉中的应用与前景》讲座的内容总结梳理。1 视觉智能的内涵计算机视觉系统的任务就是像人一样描述摄像机拍摄到...

深度学习与计算机视觉系列(7)_神经网络数据预处理,正则化与损失函数

1. 引言 上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。 2. 数据与网络的设定 前一节提到...

深度学习与计算机视觉系列(5)_反向传播与它的直观理解

其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的

深度学习与计算机视觉系列(5)_反向传播与它的直观理解

一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的,所以硬着头皮写写吧。

深度学习与计算机视觉系列(5)_反向传播与它的直观理解

深度学习与计算机视觉系列(5)_反向传播与它的直观理解 标签: <a hr...

深度学习在计算机视觉领域的前沿进展

转载自知乎:https://zhuanlan.zhihu.com/p/24699780 虽然接触深度学习大概半年多了,但是一些思路还没有理顺,偶然间在知乎上看到这篇文章,感觉可以把我处于浆糊的脑袋稍...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)