# 半平面求交——放置守卫

#include <bits/stdc++.h>
//using namespcace std;
const int maxn = 1510;
const double EPS = 1E-12;
struct Point
{
double x, y;
};
Point convex[maxn];
struct Line
{
Point a, b;
double ang;
};
Line l[maxn], st[maxn];
int n, ccnt;
double operator *(const Point &x, const Point &y)
{
return x.x * y.y - x.y * y.x;
}
Point operator - (Point x, const Point &y)
{
x.x -= y.x, x.y -= y.y;
return x;
}
Point operator * (const Line &x, const Line &y)
{
double a1 = (y.b - x.a) * (y.a - x.a) , a2 = (y.a - x.b) * (y.b - x.b);
Point r;
r.x =  (x.a.x * a2 + x.b.x * a1) / (a2 + a1);
r.y = (x.a.y * a2 + x.b.y * a1) / (a2 + a1);
return r;
}
bool operator == (const Point &a, const Point &b)
{
return fabs(a.x - b.x) < EPS && fabs(a.y - b.y) < EPS;
}
bool operator <(const Line &x, const Line &y)
{
if (fabs(x.ang - y.ang) < EPS)
return (y.b - x.a) * (x.b - y.a) > EPS;
return x.ang < y.ang;
}
bool JudgeOut(const Line &x, const Point &p)
{
return (p - x.a) * (x.b - x.a) > EPS;
}
bool Parellel(const Line &x, const Line &y)
{
return fabs((x.b - x.a) * (y.b - y.a)) < -EPS;
}
void InputData()
{
scanf("%d", &n);
scanf("%lf%lf", &l[0].b.x, &l[0].b.y);
l[n - 1].a.x = l[0].b.x, l[n - 1].a.y = l[0].b.y;
for (int i = 1; i < n; i++)
{
scanf("%lf%lf", &l[i].b.x, &l[i].b.y);
l[i - 1].a.x = l[i].b.x; l[i - 1].a.y = l[i].b.y;
}
for (int i = 0; i < n; i++)
l[i].ang = atan2(l[i].b.y - l[i].a.y, l[i].b.x - l[i].a.x);
}
double HplaneIntersection()
{
int top = 1, bot  = 0;
std::sort(l, l + n);
int tmp = 1;
for (int i = 1; i < n; i++)
if (l[i].ang - l[i - 1].ang > EPS) l[tmp++] = l[i];
n = tmp;
st[0] = l[0], st[1] = l[1];
for (int i = 2; i < n; i++)
{
if (Parellel(st[top], st[top - 1]) || Parellel(st[bot], st[bot - 1])) return 0;
while (bot < top && JudgeOut(l[i], st[top]*st[top - 1])) top--;
while (bot < top && JudgeOut(l[i], st[bot]*st[bot + 1])) bot++;
st[++top] = l[i];
}
while (bot < top && JudgeOut(st[bot], st[top]*st[top - 1])) top--;
while (bot < top && JudgeOut(st[top], st[bot]*st[bot + 1])) bot++;
if (top <= bot + 1) return 0.00;
st[++top] = st[bot];
ccnt = 0;
for (int i = bot; i < top; i++)
convex[ccnt++] = st[i] * st[i + 1];
double ans = 0;
convex[ccnt] = convex[0];
for (int i = 0; i < ccnt; i++)
ans += convex[i] * convex[i + 1];
return ans / 2;
}
double CheckDirection()
{
double ans = 0;
for (int i = 0; i < n; i++)
ans += l[i].a * l[i].b;
return ans;
}
void ChangeDirection()
{
for (int i = 0; i < n; i++)
std::swap(l[i].a, l[i].b);
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
InputData();
if (CheckDirection() < 0) ChangeDirection();
printf("%.2f\n", HplaneIntersection());
}
return 0;
}

• 本文已收录于以下专栏：

## 半平面求交

• Step 1: Separate the h-planes into two sets. One has polar angles of (-½π, ½π], the other has thos...
• linolzhang
• 2017年02月17日 23:11
• 431

## Real-Time Rendering (8) - 光线求交（Ray intersection）

• qp120291570
• 2013年12月21日 20:37
• 4737

## 【BZOJ1038】【codevs1412】瞭望塔，半平面交/三分法

.
• xym_CSDN
• 2017年03月17日 11:02
• 444

## 半平面求交——点在凸包外

#include using namespace std; const int maxn = 50010; const double EPS = 1e-8; struct Point { doub...
• Tczxw
• 2015年11月21日 11:25
• 340

## poj 2451 (半平面求交)

• agralol
• 2011年08月14日 11:19
• 360

## 棋盘上的守卫

• ZJWSA
• 2017年08月18日 20:37
• 126

## bzoj 4883: [Lydsy2017年5月月赛]棋盘上的守卫 最小生成树

• qq_33229466
• 2017年05月09日 20:33
• 280

## OSG鼠标选择求交

OSG鼠标选择求交 ////求交方法一：(用WINDOW坐标值，在相机下求交) //osg::ref_ptr picker = newosgUtil::LineSegmentIntersector...
• u010698150
• 2014年08月24日 15:16
• 686

## osg 两个面求交线

• mj511099781
• 2015年07月13日 15:37
• 1072

## OSG求交器（一）面求交器PlaneIntersector

OSG求交器之平面求交器
• csxiaoshui
• 2016年06月13日 11:53
• 2642

举报原因： 您举报文章：半平面求交——放置守卫 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)