9.1 证明: p≥1 时,闵可夫斯基距离满足距离度量的四条基本性质。 0≤p<1 时,闵可夫斯基距离只满足非负性、规范性和对称性,不满足三角不等式。当p趋向于无穷大时,闵可夫斯基距离等于对应分量的最大绝对距离,也称为切比雪夫距离:
limp→+∞(∑u=1n|xiu−xju|p)1p=maxu|xiu−xju|.
解答:
- 当 p>0 时,
非负性:显然为正。
规范性:当 xi=xj 时,有 (∑nu=1|xiu−xju|p)1p=0 ;当 (∑nu=1|xiu−xju|p)1p=0 时,假设 xi≠xj ,则 (∑nu=1|xiu−xju|p)1p≠0 ,与条件矛盾,故假设不成立,应有 xi=xj 。
对称性:绝对值不变,故距离不变。显然
闵可夫斯基不等式
当 p≥1 时,则有如下不等式成立,称为闵可夫斯基不等式:
(∑i=1n|ai+bi|p)1p≤(∑i=1n|ai|p)1p+