西瓜书《机器学习》课后答案——chapter9

9.1 证明: p1 时,闵可夫斯基距离满足距离度量的四条基本性质。 0p<1 时,闵可夫斯基距离只满足非负性、规范性和对称性,不满足三角不等式。当p趋向于无穷大时,闵可夫斯基距离等于对应分量的最大绝对距离,也称为切比雪夫距离

limp+(u=1n|xiuxju|p)1p=maxu|xiuxju|.

解答:

  • p>0 时,
    非负性:显然为正。
    规范性:当 xi=xj 时,有 (nu=1|xiuxju|p)1p=0 ;当 (nu=1|xiuxju|p)1p=0 时,假设 xixj ,则 (nu=1|xiuxju|p)1p0 ,与条件矛盾,故假设不成立,应有 xi=xj
    对称性:绝对值不变,故距离不变。显然

闵可夫斯基不等式
p1 时,则有如下不等式成立,称为闵可夫斯基不等式:

(i=1n|ai+bi|p)1p(i=1n|ai|p)1p+
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值