【动态规划】print article

原创 2012年03月24日 11:24:49
Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to
use it to print articles. But it is too old to work for a long time and it will certainly wear
and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be
printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 
Input
There are many test cases. For each test case, There are two numbers N and M in the first line
(0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines.
Input are terminated by EOF.
 

Output
A single number, meaning the mininum cost to print the article.
 

Sample Input
5 5
5
9
5
7
5 

Sample Output
230 
此题考察斜率优化的动态规划。

朴素方程:f[i] = min(f[j] + sqr(s[i] - s[j]) + m),
可得到斜率不等式:
  f[j] - f[k] + sqr(s[j]) - sqr(s[k])
——————————————————— >= 2s[i]
              s[j] - s[k]

注意s[j]可能等于s[k],所以斜率为0的情况需要特殊判断。
Accode:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <bitset>
#include <algorithm>

const char fi[] = "print_article.in";
const char fo[] = "print_article.out";
const int maxN = 500010;

typedef long long int64;
int64 F[maxN], s[maxN];
int q[maxN];
int n, m, f, r;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

inline int getint()
{
    int res = 0; char tmp;
    while (!isdigit(tmp = getchar()));
    do res = (res << 3) + (res << 1) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return res;
}

void readdata()
{
    s[0] = 0;
    for (int i = 1; i < n + 1; ++i)
        (s[i] = getint()) += s[i - 1];
    return;
}

#define sqr(x) ((x) * (x))

#define check(j, k, i) \
(F[j] - F[k] + sqr(s[j]) - sqr(s[k]) \
<= s[i] * (s[j] - s[k]) << 1)

#define cmp(j, k, i) \
(s[j] == s[k] ? (F[j] < F[k]) : \
(s[k] == s[i] ? (F[k] > F[i]) : \
(F[j] - F[k] + sqr(s[j]) - sqr(s[k])) \
* (s[k] - s[i]) \
<= (F[k] - F[i] + sqr(s[k]) - sqr(s[i])) \
* (s[j] - s[k])))

int64 work()
{
    f = 0, r = 1;
    for (int i = 1; i < n + 1; ++i)
    {
        while (f < r - 1 && !check(q[f], q[f + 1], i)) ++f;
        F[i] = F[q[f]] + sqr(s[i] - s[q[f]]) + m;
        while (f < r - 1 && !cmp(q[r - 2], q[r - 1], i)) --r;
        q[r++] = i;
    }
    return F[n];
}

int main()
{
    init_file();
    while (scanf("%d%d", &n, &m) == 2)
    {
        readdata();
        printf("%I64d\n", work());
    }
    return 0;
}

#undef sqr
#undef check
#undef cmp

【动态规划15】hdu3057 Print Article(斜率优化入门)

斜率优化 推推公式搞一搞
  • Flanoc
  • Flanoc
  • 2017年06月13日 19:00
  • 130

poj 3390 Print Words in Lines 动态规划

动态规划原理附题详解。
  • sepNINE
  • sepNINE
  • 2015年03月19日 00:01
  • 854

动态规划 源码

  • 2017年10月31日 10:51
  • 12KB
  • 下载

hdu3507 Print Article 单调队列斜率优化DP

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...
  • corncsd
  • corncsd
  • 2015年05月22日 09:49
  • 206

动态规划,建桥问题代码

  • 2017年11月09日 17:06
  • 340KB
  • 下载

Hdu-3507 Print Article

hdu-3507 print article

算法之动态规划

  • 2016年01月05日 07:48
  • 5KB
  • 下载

逐时段摄动动态规划poa

  • 2015年11月28日 14:49
  • 32KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【动态规划】print article
举报原因:
原因补充:

(最多只允许输入30个字)