# 【动态规划】print article

Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to
use it to print articles. But it is too old to work for a long time and it will certainly wear
and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be
printed. Also, Zero know that print k words in one line will cost


M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

Input
There are many test cases. For each test case, There are two numbers N and M in the first line
(0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines.
Input are terminated by EOF.

Output
A single number, meaning the mininum cost to print the article.

Sample Input
5 5
5
9
5
7
5

Sample Output
230 

f[j] - f[k] + sqr(s[j]) - sqr(s[k])
——————————————————— >= 2s[i]
s[j] - s[k]

Accode：

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <bitset>
#include <algorithm>

const char fi[] = "print_article.in";
const char fo[] = "print_article.out";
const int maxN = 500010;

typedef long long int64;
int64 F[maxN], s[maxN];
int q[maxN];
int n, m, f, r;

void init_file()
{
freopen(fi, "r", stdin);
freopen(fo, "w", stdout);
return;
}

inline int getint()
{
int res = 0; char tmp;
while (!isdigit(tmp = getchar()));
do res = (res << 3) + (res << 1) + tmp - '0';
while (isdigit(tmp = getchar()));
return res;
}

{
s[0] = 0;
for (int i = 1; i < n + 1; ++i)
(s[i] = getint()) += s[i - 1];
return;
}

#define sqr(x) ((x) * (x))

#define check(j, k, i) \
(F[j] - F[k] + sqr(s[j]) - sqr(s[k]) \
<= s[i] * (s[j] - s[k]) << 1)

#define cmp(j, k, i) \
(s[j] == s[k] ? (F[j] < F[k]) : \
(s[k] == s[i] ? (F[k] > F[i]) : \
(F[j] - F[k] + sqr(s[j]) - sqr(s[k])) \
* (s[k] - s[i]) \
<= (F[k] - F[i] + sqr(s[k]) - sqr(s[i])) \
* (s[j] - s[k])))

int64 work()
{
f = 0, r = 1;
for (int i = 1; i < n + 1; ++i)
{
while (f < r - 1 && !check(q[f], q[f + 1], i)) ++f;
F[i] = F[q[f]] + sqr(s[i] - s[q[f]]) + m;
while (f < r - 1 && !cmp(q[r - 2], q[r - 1], i)) --r;
q[r++] = i;
}
return F[n];
}

int main()
{
init_file();
while (scanf("%d%d", &n, &m) == 2)
{
printf("%I64d\n", work());
}
return 0;
}

#undef sqr
#undef check
#undef cmp


• 本文已收录于以下专栏：

举报原因： 您举报文章：【动态规划】print article 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)