Linear regression with multiple variables

原创 2016年06月02日 12:57:06


Suppose you are selling your house and you want to know what a good market price would be. One way to do this is to first collect information on recent houses sold and make a model of housing prices.

The file ex1data2.txt contains a training set of housing prices in Portland, Oregon. The first column is the size of the house (in square feet), the second column is the number of bedrooms, and the third column is the price of the house.





    1)step 1: Feature Normalization

By looking at the values(ex1data2.txt), note that house sizes are about 1000 times the number of bedrooms. When features differ by orders of magnitude, first performing feature scaling can make gradient descent converge much more quickly





<span style="font-size:18px;">function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X 
%   FEATURENORMALIZE(X) returns a normalized version of X where
%   the mean value of each feature is 0 and the standard deviation
%   is 1. This is often a good preprocessing step to do when
%   working with learning algorithms.
% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));      % mean value 均值   size(X,2)  列数
sigma = zeros(1, size(X, 2));   % standard deviation  标准差
% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
%               of the feature and subtract it from the dataset,
%               storing the mean value in mu. Next, compute the 
%               standard deviation of each feature and divide
%               each feature by it's standard deviation, storing
%               the standard deviation in sigma. 
%               Note that X is a matrix where each column is a 
%               feature and each row is an example. You need 
%               to perform the normalization separately for 
%               each feature. 
% Hint: You might find the 'mean' and 'std' functions useful.
  mu = mean(X);       %  mean value 
  sigma = std(X);     %  standard deviation
  X_norm  = (X - repmat(mu,size(X,1),1)) ./  repmat(sigma,size(X,1),1);%新数据=(原数据-均值)/标准差

2)step 2:Gradient Descent


 theta = theta - alpha / m * X' * (X * theta - y);

此部分Matlab 代码如下:

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
%   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
%   taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta.
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCostMulti) and gradient here.
    theta = theta - alpha / m * X' * (X * theta - y);
    % ============================================================
    % Save the cost J in every iteration
    J_history(iter) = computeCostMulti(X, y, theta);


Normal Equations:

the closed-form solution to linear regression is:

Using this formula does not require any feature scaling, and you will get an exact solution in one calculation: there is noloop until convergencelike in gradient descent


function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression 
%   NORMALEQN(X,y) computes the closed-form solution to linear 
%   regression using the normal equations.
theta = zeros(size(X, 2), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
%               to linear regression and put the result in theta.
% ---------------------- Sample Solution ----------------------
theta = pinv( X' * X ) * X' * y;





机器学习作业之 Linear Regression with Multiple Variables (Week 2)

function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUT...
  • susser43
  • susser43
  • 2014年11月19日 22:55
  • 716

Linear regression with one variable

1.Promble:        In this part of this exercise, you will implement linear regression with one varia...
  • ZHE123ZHE123ZHE123
  • ZHE123ZHE123ZHE123
  • 2016年05月30日 23:49
  • 425

Coursera机器学习-Week 2-测验:Linear Regression with Multiple Variables

  • f_zyj
  • f_zyj
  • 2017年12月27日 19:12
  • 97

Stanford公开课机器学习---week2-1.多变量线性回归 (Linear Regression with multiple variable)

3.多变量线性回归 (Linear Regression with multiple variable)3.1 多维特征(Multiple Features) n 代表特征的数量 x(i)x^{(i)...
  • muzilanlan
  • muzilanlan
  • 2015年05月27日 12:39
  • 1371

Coursera公开课笔记: 斯坦福大学机器学习第四课“多变量线性回归(Linear Regression with Multiple Variables)”

  • fennvde007
  • fennvde007
  • 2014年07月08日 19:22
  • 1020

Linear Regression with Multiple Variables

Linear Regression with Multiple Variables =====================================multiple-features===...
  • qq_31600497
  • qq_31600497
  • 2015年12月18日 09:59
  • 241

(2)Linear Regression with Multiple Variables

以下内容源自coursera上的machine learning,同时参考了Rachel-Zhang的博客( 上一节...
  • xuexiang0704
  • xuexiang0704
  • 2013年04月29日 21:40
  • 1131

斯坦福大学机器学习公开课---Programming Exercise 1: Linear Regression

斯坦福大学机器学习公开课---Programming Exercise 1: Linear Regression 1  Linear regression with one variable ...
  • E_pen
  • E_pen
  • 2015年02月03日 23:10
  • 3286

Regression(3)-------Linear Regression with multiple variables

(一)、Multiple Features: 多变量假设:输出由多维输入决定,即输入为多维特征。如下图所示:Price为输出,前面四维为输入: 假设h(x)=θ0+θ1x1+……所谓多...
  • u012796064
  • u012796064
  • 2013年12月01日 10:29
  • 512

[Coursera机器学习]Linear Regression WEEK2编程作业

1 InitIn the fi le warmUpExercise.m, you will find the outline of an Octave/MATLAB function. Modify ...
  • wangjianyu0115
  • wangjianyu0115
  • 2016年09月05日 15:55
  • 2475
您举报文章:Linear regression with multiple variables