- 博客(15)
- 收藏
- 关注
原创 配置ORB-SLAM2环境
(1)操作系统:Ubuntu 16.04https://blog.csdn.net/lingyunxianhe/article/details/81415675进去后,格式化分区,和删除分区是一个道理。因为有的分区虽然格式化了,但是还是有乱码在,所以,直接删除。 分区边绿色的,就表示空闲分区了。有编号的分区不要删,是wiondows系统下的硬盘。ubuntu的是无编号分区。联想电脑进入b...
2019-07-08 18:45:29 610
原创 机器学习-Recommender Systems
Problem Formulation(规划)在机器学习中有一种大思想,它针对一些问题,可能并不是所有的问题,而是一些问题,有算法可以为你自动学习一套好的特征。因此,不要试图手动设计,而手写代码这是目前为止我们常干的。有一些设置,你可以有一个算法,仅仅学习其使用的特征,推荐系统就是类型设置的一个例子。我们有 5 部电影和 4 个用户,我们要求用户为电影打分。没有一个用户给所有的电影都打过分...
2019-03-25 12:57:02 270
原创 机器学习-Anomaly Detection
Problem Motivation异常检测(Anomaly detection)是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行 QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,...
2019-03-25 12:12:59 403
原创 机器学习-无监督学习
13. ClusteringUnsupervised Learning_ Introduction在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:在这里我们有一系列点,却没有标签。因此,我...
2019-03-25 09:53:24 652
原创 机器学习-支持向量机
12 support vector machines12.1 optimization objective支持向量机(Support Vector Machine)。与逻辑回归和神经网络相比, 在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。监督学习算法。正如我们之前开发的学习算法,我们从优化目标开始。为了描述支持向量机,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上...
2019-03-21 08:31:52 441
原创 鸡尾酒问题,最小二乘法和范数的思考
temporal is 处于动态平衡中,因为任何量都不可能永恒不变。 因为宇宙的本质就是变得,所以每个量在一个区间内变化,而保持系统的平衡。 所以没有唯一的准则,而是在不断的变化,人也相应的调整策略。这就是狐狸。 但是又要和刺猬一样,有一个目标,短期目标不断变化,长期目标也有偏动,但是方向不变。 为目标奋斗。这就是刺猬。鸡尾酒问题当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当...
2019-03-20 15:27:49 1385
原创 机器学习6
10 Advice for Applying Machine Learning10.1 Deciding What to Try Next10.2 Evaluating a Hypothesis10.3 Model Selection and Train/Validation/Test Sets10.4 Diagnosing Bias vs. Variance10.5 Regulariz...
2019-03-15 16:50:03 203
原创 机器学习5
Neural Networks: LearningCost Function逻辑回归问题中我们的代价函数为:在逻辑回归中,我们只有一个输出变量,又称标量(scalar) , 也只有一个因变量 y,但是在神经网络中,我们可以有很多输出变量,我们的 hθ(x)是一个维度为 K 的向量,并且我们训练集中的因变量也是同样维度的一个向量,因此我们的代价函数会比逻辑回归更加复杂一些。这个看起...
2019-03-15 12:02:07 188
原创 机器学习4--神经网络(好激动的一部分)
Neural Networks: Representation理论上我们可以用多项式函数去近似任意函数(泰勒极数(Taylor series)),从而可得到任意问题的拟合曲线。在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数可以用来近似计算函数的值.在实际处理时,特征量通常会很多,如果再构造高阶多项...
2019-03-13 13:18:19 821
原创 机器学习3补充
写笔记,便于记忆,回顾。写的不好的地方,后面再补充。Simplified Cost Function and Gradient Descent基于上篇得到的梯度下降算法:如果有n个特征。则 当使用梯度下降法来实现逻辑回归时, 针对 θ0 到 θn, 我们需要用这个表达式来更新这些参数。 可以使用 for 循环来更新这些参数值, 用 for i=1 to n, 或者 for i=1 to...
2019-03-13 10:55:39 216
原创 机器学习3
Logistic Regression在分类问题中,你要预测的变量 y 是离散的值,我们将学习一种叫做逻辑回归 (LogisticRegression) 的算法,这是目前最流行使用最广泛的一种学习算法。spam 垃圾邮件。transaction 交易;fraudulent 欺骗的:tumor 肿瘤;肿瘤诊断问题的目的是告诉病人是否为恶性肿瘤,是一个二元分类问题(binary class...
2019-03-12 21:43:07 136
原创 吴恩达机器学习-自制版Matlab作业1(Coursera上无法提交,放弃折腾)
知识点1知识点2Matrices and VectorsA=[1 21 6;5 17 9;31 2 7] 和 A=[1,21 ,6;5 ,17, 9;31, 2, 7] 是一样的效果。(逗号)但是这里发现第八个元素,不是按照行来数,而是按照列。在matlab中如何我们要对矩阵进行转置,那么我们就使用A’这种的方式.那么逆矩阵如何表示呢?inv(A) 。注意不是每个矩阵都是有逆矩...
2019-03-12 00:05:09 1587 1
原创 机器学习2——Linear Regression with Multiple Variables
Debug 调试。。bug 问题 iteration 迭代。。。 convergence 收敛。以上是对上期的补充。以下进入正题。多特征Gradient Descent for Multiple Variables多变量代价函数相对于单变量代价函数,没有什么变化。唯一变化就在于,原先是一个数,现在成了一个矩阵的数。公式等没有其他变化。Gradient Descent in ...
2019-03-11 23:45:34 244
原创 吴恩达机器学习总结-入门、Linear Regression、Gradient Descent、Linear Algebra
Chinese Software Developer Network机器学习主要有两种机器学习的算法分类监督学习无监督学习两者的区别为是否需要人工参与数据结果的标注。还有一些算法也属于机器学习领域,诸如:半监督学习: 介于监督学习于无监督学习之间。推荐算法: 买完商品后还推荐同款的算法。强化学习: 通过观察来学习如何做出动作,每个动作都会对环境有所影响,而环境的反馈又可以...
2019-03-11 18:47:52 295
原创 如何写博客-个人心得总结
进入创作中心后,看一遍,心里有个谱,然后全部删掉。直接写。(一下符号,尽量在英文模式下输入,不然会有错误,无法识别。)#号后空格就是标题一两个#号就是标题二以此类推。分隔符用—换行表示,前面要先空一行。同样的,-这个符号也能表示列表项。如下:我只打了一个-,就表示黑点。换行,就会一直有这个黑点。往回删一下,就没了。5. 标序号就是直接标。6. 但是如果想他默认为是列表,那...
2019-03-07 19:19:16 473
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人