笔记:Deep transfer network: unsupervised domain adaptation

该文介绍了一种利用最大均值差异(MMD)约束源域和目标域的边际分布及条件分布的深度迁移网络方法。通过MMD优化特征分布和分类结果分布,使两个领域的特征和分类结果尽可能接近。文章对比了传统方法和深度学习的应用,并提出了基于mini-batch的优化算法。此外,为解决目标域缺乏标签的问题,使用了简单的分类器生成伪标签。该方法关注于构建领域不变的特征,同时考虑了类别间的分布关系。
摘要由CSDN通过智能技术生成

这篇文章里提出了一种用MMD来同时对两个域上的marginal distribution和conditional distribution进行约束的迁移网络。
具体而言,用MMD来对两个域(源域和目标域)上的提取到的特征分布进行约束,从而使两个域上的特征分布尽可能相同,这个分布叫做marginal distribution;同时对两个域上的softmax分类结果用MMD来进行约束,使得两个分类结果的分布尽可能相同,这个分布叫做conditional distribution。这两个方面应该和这篇文章Long M, Wang J, Ding G, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 2200-2207.的思路基本相同,不同之处在于这篇文章使用的是基于传统的方法,这里使用了深度学习。
由于本文并没有使用标准的卷积网络结构,所以最后取得的效果和之前的deep learning的方法并没有可比性,最后实验部分也是用的传统的浅层方法进行对比,没有与最新的基于deep learning方法对比。
文章方法的网络结构在文中表示如下:
architecture
首先是特征提取层,也就是图中的前l-1层,最后一层是分类层,输出的是属于每个类的概率。本文在第l-1层以及分类器的输出衡量源域和目标域基于MMD的分布损失。在特征分布上,通过在目标函数中的marginal MMD来衡量两个域上的分布区别,具体如下:

CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值