ubuntu下cuDNN配置

本文介绍了在Ubuntu系统中配置cuDNN以加速深度学习的过程。首先,cuda作为GPU开发工具,而cuDNN是对cuda的优化,尤其在神经网络操作上。配置cuDNN需要先安装cuda,然后下载cuDNN压缩包并解压,将包含的文件复制到cuda安装目录。由于权限问题,可能需要手动创建符号链接,并在编译如caffe等深度学习库时启用cuDNN支持。
摘要由CSDN通过智能技术生成

一般我们开发都是基于CPU的,cuda可以看作是辅助我们针对GPU开发的一个工具。 而cuDNN官网的全称是CUDA Deep Neural Network,相比标准的cuda,它在一些常用的神经网络操作上进行了性能的优化,比如卷积,pooling,归一化,以及激活层等等。在理解上面这段的基础上,我们可以猜测配置cuDNN时是要对cuda进行一些修改,所以我们要先安装cuda。cuDNN下载需要注册,这个过程耐心点也很快。下面以ubuntu为例说明如何配置cuDNN进行神经网络的加速。
1.下载cuDNN压缩包;这里附上cudnn-7.0的百度云链接
2.对下载文件进行解压:

tar -zxvf cudnn-7.0-linux-x64-v3.0-prod.tgz

3.解压后会看到一个cuda文件夹,里面包含了include以及lib64两个子目录。我

Ubuntu上安装cuDNN通常需要以下步骤: 1. **下载cuDNN**:首先访问NVIDIA官网(https://developer.nvidia.com/cudnn),下载适合你的CUDA版本的cuDNN。注意选择适用于Ubuntu的版本,并根据你的GPU架构(比如CPU系列)选择合适的包。 2. **更新依赖**:在安装之前,确保你的系统已经是最新的,可以使用`sudo apt update && sudo apt upgrade`命令。 3. **安装依赖**:cuDNN有时需要特定的依赖项才能安装,比如build-essential、cuda-cubin-tools等,可以使用`sudo apt install build-essential cuda-command-line-tools libncurses5-dev libcurl4-openssl-dev`。 4. **解压和配置**:将下载的cuDNN压缩包解压到合适的位置,然后创建一个名为`install.txt`的文件,内容类似`-- Silence is golden - /usr/local/cuda`,这告诉cuDNN安装在哪里。 5. **运行安装脚本**:进入解压目录,执行`bash install_file_name.run`,这里填写你刚才创建的安装文件名。 6. **完成安装**:脚本会引导你完成剩余的安装过程,包括添加环境变量和设置库路径。 7. **验证安装**:安装完成后,你可以按照前面提到的方法检查cuDNN的安装位置、环境变量设置以及运行测试程序来验证安装是否成功。 8. **添加开机启动**:为了每次启动都无需手动配置,可以将cuDNN的相关环境变量添加到`~/.bashrc`或`~/.profile`文件中,然后运行`source ~/.bashrc`(或重启)使更改生效。 记住,不同的cuDNN版本可能会有不同的安装步骤,确保遵循官方文档中的指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值