[超级详细系列]ubuntu22.04配置深度学习环境(显卡驱动+CUDA+cuDNN+Pytorch)--[1]安装显卡驱动

        [写在前面]  👇👇👇

        如果这篇博客写的还可以的话,希望各位好心的读者朋友们到最下面点击关注一下Franpper的公众号,或者也可以直接通过名字搜索:Franpper的知识铺。快要过年了,Franpper想制作一款红包封面,但是需要100个关注者,555。  

        下面开始今天的内容!

        Franpepr有一台旧电脑,是大学期间买的。最近把它刷成了Ubuntu系统,想配置一下深度学习环境。在这里记录同时和大家分享一下,希望对大家有所帮助。由于篇幅比较长,所以Franpper把整个安装过程分为了3篇博文,分别是显卡驱动的安装、Anaconda与CUDA的安装、cuDNN与Pytorch的安装。整个安装流程与在windows下安装相似,没有配置过的小伙伴可以先浏览一下Franpper之前分享过的两篇博文大致了解一下先。

                      深度学习环境配置(pytorch版本)----超级无敌详细版(有手就行)

           深度学习环境配置:CUDA、cuDNN 和 PyTorch 版本的选择与搭配指南(建议收藏)

        整个过程从头到为配置下来,Franpper感觉最麻烦的步骤为显卡驱动的安装、配置CUDA次之。本次ubuntu下配置的三篇博文为:

[超级详细系列]ubuntu22.04配置深度学习环境(显卡驱动+CUDA+cuDNN+Pytorch)--[1]安装显卡驱动 (本篇)

[超级详细系列]ubuntu22.04配置深度学习环境(显卡驱动+CUDA+cuDNN+Pytorch)--[2]安装Anaconda与CUDA-CSDN博客

[超级详细系列]ubuntu22.04配置深度学习环境(显卡驱动+CUDA+cuDNN+Pytorch)--[3]安装cuDNN与Pytorch

        

        下面正式开始本次的介绍(假如朋友你的电脑里有显卡驱动则可以跳过本篇)

1. 查看是否缺少驱动

        首先输入下方的命令,假如也输出了和下图相同的结果,说明缺少显卡驱动,则需要安装显卡驱动。

nvidia-smi
查看是否有显卡驱动

2. 安装显卡驱动

         Franpper在网上查了几种安装驱动的方式,并且都试了一下,在线的两种方式都很简便,但是试了几次都失败了。离线安装虽然麻烦,但是一次就安装成功了。建议大家先试下在线安装,如果不行的话再尝试离线安装。

2.1 在线安装

2.1.1 软件和更新

        点击进入“软件和更新”

        然后进入附加驱动栏,选择一个推荐的驱动版本,然后点击应用更改。

2.1.2 命令行安装

 1) 添加驱动源

sudo add-apt-repository ppa:graphics-drivers/ppa

2) 更新软件源

sudo apt-get update

3) 安装系统推荐的显卡驱动:

 Franpper选择的是版本535

sudo apt-get install nvidia-driver-535

2.2 离线安装

1) 首先通过下面命令查看电脑的显卡型号

lspci | grep -i nvidia

可以看到本次配置所使用笔记本的显卡型号是1050 Ti。 

显卡型号

2) 根据上面查询到的显卡型号去官网下载显卡驱动程序

官方驱动 | NVIDIA下载适用于 GeForce、TITAN、NVIDIA RTX、数据中心、GRID 等 NVIDIA 产品的新驱动。icon-default.png?t=N7T8https://www.nvidia.cn/Download/index.aspx?lang=cn

         根据自己的配置选择对应的选项,然后点击确定

选择属性

         在弹出的新界面中选择同意并开始下载

        这里有一点需要注意一下,下载到的驱动文件应该保存在一个不含有中文的路径下,避免对以后的安装产生影响。 

3)   禁用Nouveau

        Nouveau是由第三方为NVIDIA显卡开发的一个开源3D驱动,为避免和官方显卡驱动冲突,所以最好禁用掉Nouveau。

        ·执行以下命令,如果什么都不输出表示Nouveau已经禁用,则可以直接跳过此步。

lsmod | grep nouveau
 执行命令,什么都不输出表示Nouveau已经禁用

        禁用前首先备份文件

sudo cp /etc/modprobe.d/blacklist.conf /etc/modprobe.d/blacklist.conf.backup

        ·接下来打开配置文件,输入下面的指令回车后需要输入密码

sudo gedit /etc/modprobe.d/blacklist.conf

         输入密码稍微等一小会儿后会弹出文本编辑器,将以下内容粘贴至文件末尾

blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off

 修改效果如下

 修改完毕后保存并关闭配置文件

 输入以下命令更新配置

sudo update-initramfs –u

输入以下命令重启电脑

sudo reboot

重启后通过lsmod | grep nouveau命令(上面给出过)测试是否成功禁用。

4)进入命令行界面

        安装驱动时要进入命令行界面(按下Ctrl+Alt+F1进入命令行界面,按下Ctrl+Alt+F7返回图形界面),进入命令行界面不好截图,所以Franpper以拍照的形式向大家展示。

        进入命令行界面后首先输入账号密码。

5)关闭图形界面

sudo service lightdm stop

正常情况是输出输出[sudo] franpper(用户名) 后输入密码即可,即如下图所示。

       如果报错,可能是因为还没安装lightdm,推出命令行界执行下方命令安装lightdm。

sudo apt-get install lightdm

6)进入驱动文件所在的路径中

 给驱动文件赋予执行权限,这里大家将驱动文件名称换成自己下载的

chmod  777 NVIDIA-Linux-x86_64-535.146.02.run

 这里Franpper由于粗心,将146写成了164,所以没有执行成功,到第三次才发现错误。

 开始安装,同样把驱动文件名替换为自己的。命令中几个参数的含义如下:

-no-x-check:安装驱动时关闭X服务
-no-nouveau-check:安装驱动时禁用nouveau
-no-opengl-files:只安装驱动文件,不安装OpenGL文件

sudo ./NVIDIA-Linux-x86_64-535.146.02.run -no-x-check -no-nouveau-check -no-opengl-files

        接下来会弹出以下几个选项。

        There appears to already be a driver installed on your system (version: 535.146.02).  As part of installing this driver (version: 535.146.02), the existing driver will be uninstalled.  Are you sure you want to continue?    ->   [Continue Installation]

        由于Franpper之前安过一次驱动,所以它提示我是否要卸载现有版本。如果你之前没有安装过,应该不会i弹出这个选项。这里Franpper选择Continue Installation。

a9f962b07a474b109572da11c45135aa.jpg

         Install NVIDIA's 32-bit compatibility libraries?    ->   [No]

7db4e12199874f4cae14053def8f6322.jpg

 Would you like to register the kernel module sources with DKMS? This will allow DKMS to automatically build a new module, if you install a different kernel later.    ->  [No]

5c24b3803a4e472b88a55a089000e7c6.jpg

        Installation of the NVIDIA Accelerated Graphics Driver for Linux-x86_64 (version535.146.02) is now complete.     ->   [ok]

c9cabab4de6e4a0480f7b84446b0d43f.jpg

 到此位置整个安装过程已经完成了。现在退出命令行界面测试一下 👇

大功告成,打完收工!

(希望关注下公众号哦👇)

### 配置 PyTorch 深度学习环境 #### 安装 NVIDIA 显卡驱动 为了使 GPU 能够支持深度学习框架,在 Ubuntu 22.04 中需要先安装适合的 NVIDIA 显卡驱动。推荐通过官方源来完成此操作: 运行以下命令更新系统包列表并安装指定版本的 NVIDIA 驱动程序: ```bash sudo apt update && sudo apt upgrade -y sudo ubuntu-drivers autoinstall ``` 或者手动选择特定版本,例如 `nvidia-driver-535`: ```bash sudo apt-get install nvidia-driver-535 ``` 重启计算机以应用更改[^3]。 #### 安装 CUDA 工具包 CUDA 是由 NVIDIA 提供的一个并行计算平台和编程模型,它允许开发者利用 GPU 的强大性能加速应用程序。对于 PyTorch 来说,虽然可以直接安装预编译好的二进制文件而无需单独安装 CUDA,但如果希望获得更高级的功能或自定义构建,则可以考虑安装 CUDA。 执行如下指令下载并设置最新的稳定版 CUDA: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 完成后记得重新启动机器以便加载新的模块[^2]。 #### 创建 Miniconda 环境 Miniconda 是 Conda 包管理器的一个小型发行版,非常适合用来创建隔离的 Python 运行时环境。这一步有助于避免不同项目之间依赖冲突的问题。 首先获取最新版本的 Miniconda 并按照提示完成初始化过程: ```bash cd ~ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source ~/.bashrc ``` 接着新建一个专门用于 Deep Learning 的虚拟空间,并激活之: ```bash conda create --name dl_env python=3.9 conda activate dl_env ``` #### 安装 PyTorch 库及其依赖项 访问官网 (https://pytorch.org/get-started/locally/) 获取针对当前硬件条件优化过的安装脚本链接地址。通常情况下采用 pip 或者 conda 方式均可实现快速部署目的。 以下是基于 Conda 方法的例子: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 如果偏好 Pip 则可参照下面的形式: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 ``` 验证安装成功与否可以通过简单测试代码片段来进行确认: ```python import torch print(torch.cuda.is_available()) # 输出 True 表明已启用GPU支持 ``` ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Franpper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值