关闭

sdut 3254 stars

205人阅读 评论(0) 收藏 举报
分类:

给出平面坐标的n(n400)个整数点(坐标为(x,y)(0x,yn),求最小的边长为整数的能至少覆盖k个点的矩形的面积


考虑到n只有400,我们可以枚举矩形的平行于x轴的两条边的坐标,这样的话就退化为了给出一个数组求一个最小的区间并且区间内的数的和大于等于k,这部分可以用双指针来做


为了方便起见,我们可以预处理一下二维前缀和

其它的细节就见代码吧

#include<bits/stdc++.h>
using namespace std;
#define LL long long

const int maxn  = 450;

int arr[maxn][maxn];
int v[maxn];

int n;
int cal(int *l,int *r,int k){
    int st,ed;
    st = ed = 0;
    for(int i=0;i<=n;i++){
        v[i] = r[i] - l[i];
    }
    while(ed <= n && v[ed] < k){
        ed++;
    }
    if(ed > n)
        return n*n;
    int ret = ed;
    while(ed<=n){
        if(v[ed]-v[st] >= k){
            ret = min(ret,ed-st);
            st++;
        }
        else{
            ed++;
        }
    }
    return ret;
}


int main(){
    int T;
    scanf("%d",&T);
    int k;
    while(T-- && ~scanf("%d %d",&n,&k)){
        memset(arr,0,sizeof(arr));
        int x,y;
        for(int i=0;i<n;i++){
            scanf("%d %d",&x,&y);
            arr[x][y]++;
        }
        for(int i=0;i<=n;i++){
            for(int j=0;j<=n;j++){
                arr[i][j] += arr[i][j-1];
            }
        }
        for(int i=0;i<=n;i++){
            for(int j=0;j<=n;j++){
                arr[i][j] += arr[i-1][j];
            }
        }
        int ans = n*n;
        for(int i=0;i<=n;i++){
            for(int j=i+1;j<=n;j++){
                ans = min(ans,(j-i)*cal(arr[i],arr[j],k));
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:35369次
    • 积分:2169
    • 等级:
    • 排名:第17480名
    • 原创:190篇
    • 转载:0篇
    • 译文:0篇
    • 评论:11条
    最新评论