lambda QAQ

fmap :: (q -> a) -> f q -> f a

CodeForces 663E - Binary Table

给出一个n(n20)m(m105)列的01矩阵。每次操作可以将某一行取反或者将某一列取反。要求操作后的矩阵中的1的个数最少,求最小个数。


因为行比较少,我们考虑状压。

状压每一列的状态,stai位为1表示第i行为1,为0表示第i行为1

用一个函数F(sta)表示状态为sta的列的数量

考虑状压我们操作了哪些行,maski位为1表示我们翻转了第i行,为0表示没有翻转第i

考虑一个masksta的影响,显然操作后的结果为masksta,不妨记为res

然后对一个res,我们可以直接计算这一列的1的个数和取反后1的个数并且选择一个比较小的作为结果。

不妨预处理出来一个函数G(res)表示res这样的一列在翻至多一次之后的最小的1的个数

对于m105,我们考虑优化一下

构造一个函数H(mask),表示操作为mask的时候1的个数。不难想到H(mask)=sta=02n1F(sta)×G(stamask)

这个看起来好像不是很好优化,我们换一种写法
H(mask)=sta=02n1res=02n1[stamask=res]F(sta)×G(res)

因为异或的一些优良的性质,我们也可以写成

H(mask)=sta=02n1res=02n1[stares=mask]F(sta)×G(res)

这不就是异或卷积嘛(╯‵□′)╯︵┻━┻

然后就做完了


具体见代码

#include<bits/stdc++.h>
using namespace std;

const int maxn = 112345;
#define LL long long 
const LL INFF = 0x3f3f3f3f3f3f3f3fll;

void fwt (LL a[] , int n ,bool on) {
    for ( int d = 1 ; d < n ; d <<= 1 ) {
        for ( int k = d << 1 , i = 0 ; i < n ; i += k ) {
            for ( int j = 0 ; j < d ; ++ j ) {
                LL x = a[i + j] , y = a[i + j + d] ;
                if(on){
                    a[i + j] = ( x + y )  ;
                    a[i + j + d] = ( x - y  )  ;
                }
                else{
                    a[i + j] = ( x + y ) / 2 ;
                    a[i + j + d] = ( x - y ) / 2;
                }
            }
        }
    }
}

char inp[22][maxn];
int arr[maxn];
LL A[1<<22],B[1<<22];

int getone(int x,int n){
    int ret = 0 ;
    while(x){
        ret += x & 1;
        x >>= 1;
    }
    return min(ret,n - ret);
}

int main(){
    int n,m;
    scanf("%d %d",&n,&m);
    for(int i = 0 ; i < n; i ++) scanf("%s",inp[i]);
    for(int i = 0 ; i < m ; i++){
        arr[i] = 0;
        for(int j = 0 ; j < n ; j ++){
            arr[i] |= (inp[j][i] - '0') << j;
        }
    }
    memset(A,0,sizeof(A));
    for(int i = 0 ; i < m ; i++) A[arr[i]] ++;
    for(int i = 0 ; i < (1<<n) ; i ++){
        B[i] = getone(i,n);
    }
    fwt(A,1<<n,true);
    fwt(B,1<<n,true);
    for(int i = 0; i < (1<<n);i++) A[i] *= B[i];
    fwt(A,1<<n,false);
    LL ans = INFF;
    for(int i = 0 ; i < (1<<n);i++) ans = min(ans,A[i]);
    printf("%I64d\n",ans);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a1s4z5/article/details/53222750
个人分类: --数学---
想对作者说点什么? 我来说一句

cf 662C Binary Table

子集反演

QWsin QWsin

2017-02-13 20:52:25

阅读数:319

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭