#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
const int maxn=(1<<4)*4;//一个状态可以推出多个状态
int pre[maxn],now[maxn];
int m,n,t,mod;
struct matrix{
int f[16][16];
};
void dfs(int num,int p,int q)
{
if(num>4)return;
if(num==4)
{
pre[t]=q;
now[t++]=p;
return;
}
dfs(num+2,(p<<2)|3,(q<<2)|3);
dfs(num+1,(p<<1)|1,q<<1);
dfs(num+1,p<<1,(q<<1)|1);
}
matrix mul(matrix a,matrix b)
{
int i,j,k;
matrix c;
memset(c.f,0,sizeof(c.f));
for(k=0;k<16;k++)
{
for(i=0;i<16;i++)
{
if(!a.f[i][k])continue;
for(j=0;j<16;j++)
{
if(!b.f[k][j])continue;
c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[j][k])%mod;
}
}
}
return c;
}
matrix pow_mod(matrix a,int b)
{
matrix s;
memset(s.f,0,sizeof(s.f));
for(int i=0;i<16;i++)
s.f[i][i]=1;
while(b)
{
if(b&1)
s=mul(s,a);
a=mul(a,a);
b=b>>1;
}
return s;
}
int main()
{
while(cin>>n>>mod)
{
int i,j,k;
if(n==0&&m==0)
break;
t=0;
dfs(0,0,0);
matrix e;
memset(e.f,0,sizeof(e.f));
for(i=0;i<t;i++)
e.f[pre[i]][now[i]]=1;
e=pow_mod(e,n);
cout<<e.f[15][15]<<endl;
}
return 0;
}
/*
用1*2的方块填满n*m的矩阵,当n*m为奇数时,不可能成功。
由于填充方块可以横竖变换,所以n和m也可以交换
每行用二进制数表示状态,1为有方块,0为没方块(为了给下一行添加竖的方块)
一个横的方块用11表示,竖的是pre[i]=0,now[1];
pre[i],表示前一行的状态,now[i]表示在前一行的状态下,得到的下一行的状态;
dp[i][now[j]]=dp[i-1][pre[j]];
现在推状态:
前一行出现11,下一行填11
前一行出现1,下一行填0
前一行出现0,下一行填1(上一行有空位,所以必须用竖的方块填充)
(注:前一行为1时,下一行不能填0,因为方块只有11和0)
之后用dfs找出所有的pre和now,接着就能dp了
这题中n太大,而状态只有16(1<<4)种,则可以写出16*16矩阵的进行矩阵连乘加速
*/
poj 3420 dp+矩阵(矩形填充)
最新推荐文章于 2021-05-25 19:23:14 发布