poj 2888 Magic Bracelet 置换(Burnside引理)+矩阵

38 篇文章 0 订阅
1 篇文章 0 订阅
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
int m,n;
const int mod=9973;
struct matrix{
    int f[11][11];
};
int euler_phi(int x)
{
    int p=(int)sqrt(x+0.5);
    int ans=x,i;
    for(i=2;i<=p;i++)
        if(x%i==0)
        {
            ans=ans/i*(i-1);
            while(x%i==0)x/=i;
        }
    if(x>1)ans=ans/x*(x-1);
    return ans%mod;// 注意mod,不然会爆int
}
matrix mul(matrix a,matrix b)
{
    int i,j,k;
    matrix c;
    memset(c.f,0,sizeof(c.f));
    for(k=1;k<=m;k++)
    {
        for(i=1;i<=m;i++)
        {
            if(!a.f[i][k])continue;
            for(j=1;j<=m;j++)
            {
                if(!b.f[k][j])continue;
                c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[j][k])%mod;
            }
        }
    }
    return c;
}
matrix pow_mod(matrix a,int b)
{
    matrix s;
    memset(s.f,0,sizeof(s.f));
    for(int i=1;i<=m;i++)
        s.f[i][i]=1;
    while(b)
    {
        if(b&1)
            s=mul(s,a);
        a=mul(a,a);
        b=b>>1;
    }
    return s;
}
int solve(matrix e,int x)
{
    e=pow_mod(e,x);
    int i,ans=0;
    for(i=1;i<=m;i++)
        ans=(ans+e.f[i][i])%mod;
    return ans;
}
int pows(int a,int b)
{
    int s=1;
    while(b)
    {
        if(b&1)
            s=(s*a)%mod;
        a=(a*a)%mod;
        b=b>>1;
    }
    return s;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int i,j,k,a,b,ans=0;
        cin>>n>>m>>k;
        matrix e;
        for(i=1;i<=m;i++)
            for(j=1;j<=m;j++)
            e.f[i][j]=1;
        for(i=0;i<k;i++)
        {
            cin>>a>>b;
            e.f[a][b]=e.f[b][a]=0;
        }
        for(i=1;i*i<=n;i++)
        {
            if(n%i==0)
            {
                if(i*i==n)
                    ans=(ans+euler_phi(i)*solve(e,i))%mod;
                else
                    ans=(ans+euler_phi(i)*solve(e,n/i)+euler_phi(n/i)*solve(e,i))%mod;
            }
        }
        cout<<ans*pows(n%mod,mod-2)%mod<<endl;//pows里注意下n%mod
    }
    return 0;
}
/*
    这题是用欧拉函数,置换的Burnside引理和矩阵来解决的
    
    欧拉函数euler_phi(x),求的是不超过x且与x互质的正整数个数
    Burnside引理:对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数记为C(f),
则可以证明等价类数目为所有C(f)的平均值。
    矩阵:
        f[i][j]=1表示颜色i的后面可以接颜色j,而f[i][j]=0表示不行。得到矩阵A
        A^k种∑f[i][i]表示长为k的符合要求的方案数,因为项链成环,第一个和第k+1个相同
    sovle(k)表示长度为k的项链的方案数
    
    现在讨论置换:这道题只用考虑旋转不用考虑翻转,所以有顺时针旋转1~n,共n种。
    对于旋转i颗珠子,会出现p[i]=gcd(i,n)个循环,每个循环都是n/gcd(i,n);
    找不动点,就是置换后各个位置的颜色都相同。所以第j个珠子和第j+p[i]个珠子的颜色相同。所以每p个珠子颜色重复一次,
因而只要求出p[i]个珠子长的项链有多少种方案,就是旋转i个珠子的不动点数

    不动点总数ans=∑solve(p[i]),由于n可达1e9,所以不能直接求,由于p[i]=gcd(i,n),所以p[i]只能是n的因子。
    枚举因子,对于每个因子q,总共有euler_phi(n/q)个不超过n的数与n的最大公约数是q;
因为只有当k<=n/q,且k与n/q互质的情况下,gcd(k*q,n)=q;
    最后ans=∑euler_phi(n/q)*slove(q)(q为n的因子)
    
    答案就是(ans/n)%mod<-->ans*n^(mod-2)%mod(mod为素数),这个可以用模乘法的逆来证明,可以直接当定理用了
*/


如果还是不明白,可以看看这个人的博客:点击打开链接

以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值