题意:
给定一块h*w的黑板,有n个高度为1,宽为xi的广告,每次讲广告贴到尽可能高的位置,在这个位置上贴在尽可能左的位置。如果不能贴输出-1,能贴输出贴的行数。
题解:
我们根据高度建线段树,虽然h<=10^9,但n<=2e5,所以至多有2e5行被用到,所有建树只要建build(1,min(h,n),1)就可以了。树节点中maxv表示的是这段区间内的最大空余,每次贴广告的时候,找最左边的maxv>xi的位置。
代码:
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
using namespace std;
const int maxn=2e5+10;
struct node{
int l,r,maxv;
}e[maxn*4];
int w;
void build(int a,int b,int c)
{
if(a==b)
{
e[c].l=e[c].r=a;
e[c].maxv=w;
return ;
}
int mid=(a+b)/2;
build(a,mid,2*c);
build(mid+1,b,2*c+1);
e[c].l=a;
e[c].r=b;
e[c].maxv=w;
}
int update(int c,int val)
{
if(e[c].l==e[c].r)
{
e[c].maxv=e[c].maxv-val;
return e[c].l;
}
int ans;
if(e[2*c].maxv>=val)ans=update(2*c,val);
else ans=update(2*c+1,val);
e[c].maxv=max(e[2*c].maxv,e[2*c+1].maxv);
return ans;
}
int main()
{
int h,n;
while(scanf("%d%d%d",&h,&w,&n)!=EOF)
{
int i,j,k,x;
h=min(h,n);
build(1,h,1);
for(i=0;i<n;i++)
{
scanf("%d",&x);
if(x>e[1].maxv)printf("-1\n");
else printf("%d\n",update(1,x));
}
}
return 0;
}