hdu3949xor(高斯消元)

原创 2016年08月28日 19:54:32

看了半天题,没想出怎么用高斯消元解题,看完别人ac明白。
首先,用二进制去看待每一个数,因为xor其实就是二进制的不进位加法。
比如 (十进制)2^0 2^1
1 1
2 1
3 1 1
其实3参与的xor可以用(1^2)代替,因为1 , 2 ,3线性相关。

所以需要做的就是求出这n个数的线性无关基,这是就是可以用高斯消元,但是要求的是第几小 ,所以希望每个消元后的数都尽量小,所以应该从高位开始消元
不理解可以看一下下边的数据(同样n个数不同姿势出来的结果)

//从高位消元
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 
0
1
2
4
8
16
32
64
128
256
512
3072
9216
20480
66560
561152
//从低位开始消元
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
0
1
2
4
8
16
32
64
128
256
512
66560
67584
73728
561152
573440
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <stack>
#include <vector>
#include <string.h>
#include <queue>
#define msc(X) memset(X,-1,sizeof(X))
#define ms(X) memset(X,0,sizeof(X))
typedef long long LL;
using namespace std;
LL a[10005];
int n;
//求第几小应该从最高位开始消元,这样保证了线性无关组元素和最小
void Guass(void)
{
    int max_r,col,k;
    for(k=0,col=60;k<n&&col>=0;col--)
    {
        max_r=k;
        for(int i=k+1;i<n;i++)
            if(a[i]&(1ll<<col)) {
                max_r=i;
                break;
            }
        if((a[max_r]&(1ll<<col))==0)
            continue;
        if(max_r!=k)
            swap(a[k],a[max_r]);
        for(int i=0;i<n;i++)
            if(i!=k&&(a[i]&(1ll<<col)))
                a[i]^=a[k];
        k++;
    }
    sort(a,a+n);
    n=unique(a,a+n)-a;
}
LL cal(LL k)
{
    LL ans=0;
    int i=0;
    if(a[0]==0){
        if(k==1) return 0;
        k--;
        i++;
    }
    for(;i<n&&k;k>>=1,i++)
        if(k&1)
            ans^=a[i];
    if(i==n&&k) return -1;
    return ans;
}
int main(int argc, char const *argv[])
{
    int t,ti=0;
    scanf("%d",&t);
    while(++ti<=t){
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%I64d",a+i);
        Guass();
        printf("Case #%d:\n",ti);
        int q;
        scanf("%d",&q);
        while(q--){
            LL k;
            scanf("%I64d",&k);
            printf("%I64d\n",cal(k) );
        }
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 3949 XOR [线性基|高斯消元]【数学】

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 ——————————————————————————–. 碑商家客流量预测大赛》 XORT...

HDOJ-3949 XOR(高斯消元)

这道题卡了好长时间,终于解决了。网上的题解很多提到“XOR线性基”,然而并没有多少讲解的。 找学长讲了一遍,又找了点资料。终于过了。 强烈推荐下面的资料: http://blog.sina.co...

bzoj2466高斯消元求解XOR方程

http://www.lydsy.com/JudgeOnline/problem.php?id=2466 不会做,暴力- - 所以T掉不解释(n 正解是高斯消元。 预备知识:矩阵乘法,行列式的...

Codeforces Round #270 F(高斯消元+XOR)

F. Design Tutorial: Change the Goal time limit per test 2 seconds memory limit per test ...

高斯消元解xor方程 回带出解 poj3185

同1830,有关联系数为1,最后一列是是否要改变。由于题目要使元为1的尽量少,所以还要通过枚举解进行比较。我是用搜索进行枚举,将之前结果回带后,不定元行为(0,0,0,0....0)则有该元为1和0两...

【高斯消元】【图论】[Wc2011][HYSBZ/BZOJ2155]Xor

题目大意找1到n的路径中异或和最大的路径。分析首先,我们考虑这样一个问题:先看另一道题N个点M条边的边带权的无向图,求一个回路使XOR和最大(回路中的路径可以走多次)。另一道题的分析有这样一个结论(从...

poj1222高斯消元解XOR方程

http://poj.org/problem?id=1222 题意:给定一个5×6的的矩阵,每次可以选择一个,使得它和四周的值翻转(开关变向),问怎样操作使得全为0. (PS:我交C++给我CE了...

HDU 3949 XOR (异或消元)

附上链接:hzwer讲的很清楚。 附上秦总博客:秦总分析:异或消元最后得到的是一组基,那么这些数能够异或出来的值,都是这些基线性组合形成的数,注意,消元以后得到的基是有顺序的(排序以后也能得到顺序)...

【高斯消元】[SGU275]To xor or not to xor

题目大意就是给你n个数然后从中选择一些出来异或求异或可得到的最大值题目分析根据题目我们可以发现假设我们的答案是Ans=d1d2d3d4⋯Ans=d_1d2d_3d_4\cdots这里的did_i均为0...

sgu 275 To xor or not to xor(高斯消元判断是否有解)

http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=180#problem/E 有n个数,范围是[0, 10^18],n最大...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)