题目大意是给n个数,然后随便取几个数求xor和,求第k小的。(重复不计算)
首先想把所有xor的值都求出来,对于这个规模的n是不可行的。
然后之前有过类似的题,求最大的,有一种方法用到了线性基。
那么线性基能不能表示第k大的呢?
显然,因为线性基可以不重复的表示所有结果。它和原数组是等价的。
对于一个满秩矩阵
100000
010000
001000
000100
000010
000001
可以看出来最小的就是1,次小的是2,后面以此就是3,4,5,6....2^6-1.
可以看出来,每个向量基,都有取或者不取两种选择,而且把k二进制拆开来后,第i位就表示第i小的向量基取不取(1取,0不取)。
因为保证了第k大的基总大于比他小的基的线性组合。
此外,需要对非满秩的矩阵进行特判。因为其存在0的结果,如果要求最小,那么就是0。如果不是,那么就是求当前矩阵下的第(k-1)小。
然后接下来求的时候,需要对不存在的情况特判,因为每个数都有取或不取,即2^row-1种,除去全不取的情况。
/*
hdu 3949
题意:n个数异或成一个集合,求第k大
*/
#include<bits/stdc++.h>
#define LL long long
using namespace std;
struct Linear_Basis
{
LL b[63],nb[63],tot;
void init(){
tot=0;
memset(b,0,sizeof(b));
memset(nb,0,sizeof(nb));
}
bool ins(LL x){
for(int i=62;i>=0;i--)
if (x&(1LL<<i))
{
if (!b[i]) {b[i]=x;break;}
x^=b[i];
}
return x>0;
}
LL Max(LL x){
LL res=x;
for(int i=62;i>=0;i--)
res=max(res,res^b[i]);
return res;
}
LL Min(LL x){
LL res=x;
for(int i=0;i<=62;i++)
if (b[i]) res^=b[i];
return res;
}
void rebuild(){
for(int i=62;i>=0;i--)
for(int j=i-1;j>=0;j--)
if (b[i]&(1LL<<j)) b[i]^=b[j];
for(int i=0;i<=62;i++)
if (b[i]) nb[tot++]=b[i];
}
LL Kth_Max(LL k,int n){
if(tot<n){
if(k==1) return 0;
else k--;
}
if(k>=(1LL<<tot)) return -1;
LL res=0;
for(int i=62;i>=0;i--)
if (k&(1LL<<i)) res^=nb[i];
return res;
}
} LB;
int main()
{
int T;
scanf("%d",&T);
for(int t=1;t<=T;t++){
printf("Case #%d:\n", t);
LB.init();
int n;
scanf("%d",&n);
for(int i=0;i<n;i++){
LL x;
scanf("%lld",&x);
LB.ins(x);
}
LB.rebuild();
int q;
scanf("%d",&q);
while(q--){
LL k;scanf("%lld",&k);
printf("%lld\n",LB.Kth_Max(k,n));
}
}
return 0;
}