线性回归的概念,在高中数学书里就出现过。
给你一些样本点,如何找出一条直线,使得最逼近这些样本点。
给出一个例子:假设 x 是房子面积,y是房子价格,确定一条直线需要theta0和theta1.
给出x,我们就可以计算出房子的价格 h(x) = theta0+theta1*x
关键是如何计算出theta0和theta1,也就是如何找出这么一条直线呢?
在这里,引入一个概念,叫做cost function.m表示样本个数,也就是训练样本数目
这是一个square error,学过统计的应该经常见到
因此,我们的目的i就变成如何最小化这个J,意味着这条直线最逼近我们的样本点
先简化一下问题,假设theta0 = 0,那么我们的目标就是最小化J(theta1)

本文介绍了机器学习中的单变量线性回归,从寻找最逼近样本点的直线开始,通过cost function的概念解释如何确定theta0和theta1。通过举例说明,阐述了在theta1=0时优化问题简化为最小化一元二次函数,并进一步扩展到二维情况。文章提到了梯度下降法用于找到最优解,并给出了算法迭代公式,讨论了learning rate的影响。最后,提供了配套练习链接以巩固理解。
最低0.47元/天 解锁文章
1595

被折叠的 条评论
为什么被折叠?



