[2005CVPR]Histograms of Oriented Gradients for Human Detection

本文介绍了使用Histograms of Oriented Gradients (HOG)特征进行人类检测的方法,强调了其在不同尺度和光照变化下保持鲁棒性的特性。算法包括Gamma/Colour Normalization、Gradient Computation、Normalization和Descriptor Blocks等步骤,最终通过SVM进行训练。实验表明,HOG特征在行人检测中的轮廓部分权重较大。提供了INRIA行人数据库和HOG+SVM的源代码链接。
摘要由CSDN通过智能技术生成

HOG这种方法跟边缘方向直方图尺度不变特征变换(SIFT)以及形状上下文方法shape contexts有很多相似之处,但与它们的不同点是HOG描述器是在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化.HOG方法是在图像的局部细胞单元上操作,所以它对图像几何和光学的形变都能保持很好的不变.




算法步骤step1:Gamma/Colour Normalization

作者分别在灰度空间、RGB色彩空间和LAB色彩空间上对图像进色彩和 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值