收入囊中
- 差分在边缘检测的角色
- Sobel算子
- OpenCV sobel函数
- OpenCV Scharr函数
- prewitt算子
- Roberts算子
葵花宝典
差分在边缘检测到底有什么用呢?先看下面的图片
想像有如下的一维图片。
图像中的Sobel算子
- 是离散差分算子.
- 结合了高斯滤波.
是原始图像:
-
我们计算水平和竖直方向的梯度:
-
水平方向: Gx是我们Kernel size为3的水平sober算子,与I作卷积

-
竖直方向:Gy是我们Kernel size为3的水平sober算子,与I作卷积

-
-
对每个点,再计算下面的值,得到方向无关梯度

有时候也可以这样计算:

本文详细探讨了边缘检测中的差分方法,重点介绍了OpenCV库中用于边缘检测的Sobel、Prewitt和Roberts算子。通过结合高斯滤波,这些算子能够有效地识别图像边缘。Sobel算子包括水平和垂直方向的梯度计算,而Scharr算子提供更精确的结果。Prewitt和Roberts算子作为离散差分算子,同样用于边缘检测。文章还讨论了在不同核大小下的计算加速技巧。
最低0.47元/天 解锁文章
2862

被折叠的 条评论
为什么被折叠?



