上篇应用scikit-learn做文本分类中以20newsgroups为例讲了如何用三种方法提取训练集=测试集的文本feature,但是
vectorizer取多少个word呢?
预处理时候要过滤掉tf>max_df的words,max_df设多少呢?
tfidftransformer只用tf还是加idf呢?
classifier分类时迭代几次?学习率怎么设?
……
“循环一个个试过来啊”……啊好吧,matlab里就是这么做的……
好在scikit-learn中提供了pipeline(for estimator connection) & grid_search(searching best parameters)进行并行调参。
官网上pipeline解释如下:

本文介绍了如何使用scikit-learn的Pipeline和GridSearch进行并行调参,以优化文本分类任务的性能。通过20newsgroups数据集为例,展示了如何设置和调整vectorizer、tfidftransformer和SGDClassifier的参数,如word数量、max_df、是否使用idf、迭代次数和学习率等。最终找到了最佳参数组合,提高了分类的精度、召回率和F1分数。
最低0.47元/天 解锁文章
238

被折叠的 条评论
为什么被折叠?



