python并行调参——scikit-learn grid_search

本文介绍了如何使用scikit-learn的Pipeline和GridSearch进行并行调参,以优化文本分类任务的性能。通过20newsgroups数据集为例,展示了如何设置和调整vectorizer、tfidftransformer和SGDClassifier的参数,如word数量、max_df、是否使用idf、迭代次数和学习率等。最终找到了最佳参数组合,提高了分类的精度、召回率和F1分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇应用scikit-learn做文本分类中以20newsgroups为例讲了如何用三种方法提取训练集=测试集的文本feature,但是

vectorizer取多少个word呢?

预处理时候要过滤掉tf>max_df的words,max_df设多少呢?

tfidftransformer只用tf还是加idf呢?

classifier分类时迭代几次?学习率怎么设?

……

“循环一个个试过来啊”……啊好吧,matlab里就是这么做的……

好在scikit-learn中提供了pipeline(for estimator connection) & grid_search(searching best parameters)进行并行调参。


官网上pipeline解释如下:

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值