图像傅里叶变换

冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换使我们能通过频率成分来分析一个函数。


Fourier theory讲的就是:任何信(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ 这三个value可以描述正弦图像中的所有信息。

1.frequency

  


frequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency低……


2.幅值magnitude(amplitude

sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。(一个负幅值表示一个对比逆转,即明暗交换。)

3.相位表示相对于原始波形,这个波形的偏移量(左or右)。

=================================================================

一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。如下图所示。


DC term直流信号对应于频率为0的点,表示整幅图像的平均亮度,如果直流信号DC=0就表示整幅图像平均亮度的像素点个数=0,可推出 灰度图中,正弦曲线在正负值之间交替变化,但是由于灰度图中没有负值,所以所有的真实图像都有一个正的DC term,如上图所示。

  • 110
    点赞
  • 515
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 50
    评论
在Python中,可以使用NumPy和OpenCV库来实现彩色图像傅里叶变换傅里叶变换是将时间域上的信号转变为频率域上的信号,用于图像处理中的除噪和增强等操作。 对于彩色图像傅里叶变换,可以先将彩色图像转换为灰度图像,然后对灰度图像进行傅里叶变换。首先,使用NumPy库中的`numpy.fft.fft2()`函数对灰度图像进行二维傅里叶变换。这将返回一个频率域上的复数数组。可以使用`numpy.fft.fftshift()`函数将低频信号移动到图像的中心。 接下来,可以使用`numpy.abs()`函数获取傅里叶变换结果的幅度谱图像,并使用`numpy.log()`函数对幅度谱图像进行对数变换,以便更好地显示频域信息。 最后,可以使用OpenCV库的`cv2.imshow()`函数来显示彩色图像傅里叶变换结果。 这是一个简单的Python代码示例来实现彩色图像傅里叶变换: ```python import cv2 import numpy as np # 读取彩色图像 image = cv2.imread("color_image.jpg") # 将彩色图像转换为灰度图像 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 对灰度图像进行傅里叶变换 fft_image = np.fft.fft2(gray_image) # 将低频信号移动到图像中心 fft_shifted = np.fft.fftshift(fft_image) # 获取傅里叶变换结果的幅度谱图像 magnitude_spectrum = np.log(np.abs(fft_shifted)) # 显示傅里叶变换结果 cv2.imshow("Magnitude Spectrum", magnitude_spectrum) cv2.waitKey(0) cv2.destroyAllWindows() ``` 请注意,上述代码仅仅演示了彩色图像傅里叶变换的基本步骤,具体的应用和进一步处理可以根据实际需求进行调整和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rachel-Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值