Image classification with deep learning常用模型

本文总结了常用深度学习模型在图像分类任务上的应用,包括CIFAR10、MNIST和ImageNet数据集。针对CIFAR10,介绍了模型结构;对于MNIST,提到了LeNet模型;在ImageNet部分,详细解析了2012年AlexNet的网络层配置,并简要提及2014年的GoogLeNet。文章旨在帮助读者理解这些模型的基本结构和工作原理。

本文中,我会根据下大家image classification常用的cnn模型,针对cifar10(for 物体识别),mnist(for 字符识别)& ImageNet(for 物体识别)做一个model 总结。

好,本文就从数据集说起,对数据集不熟悉的小伙伴请先去了解下这3个数据集,下面我们针对每个数据集画出其通用模型。


===================================


1. Cifar10

60000张32*32彩色图,10类,每类5000张用于training,1000张用于testing,通常做object recognition/classification。

模型:(上面写的数字是该层节点数)

### 使用深度学习技术融合图像表示以进行时间序列分类 在自动驾驶领域,场景理解是一个核心任务,其中涉及多种感知任务,例如场景流估计和场景表示与定位[^1]。为了实现更高效的时间序列分类,可以采用深度学习中的特征融合方法来增强图像表示能力。 #### 特征提取与融合 深度学习模型通常通过卷积神经网络(CNN)提取空间特征,并利用循环神经网络(RNN)、长短时记忆网络(LSTM)或Transformer架构处理时间依赖关系。对于图像的时间序列数据,可以通过以下方式完成特征融合: - **多模态特征融合**:结合来自不同传感器的数据(如摄像头、激光雷达),并将其输入到共享权重的深层网络中,从而获得更加鲁棒的特征表示[^2]。 - **时空特征建模**:使用3D-CNN或者TimeDistributed CNN结构捕捉视频帧之间的动态变化模式,这种方法能够有效提升动作识别等任务的表现性能[^3]。 #### 时间序列分类的具体应用 当涉及到具体的应用场景时,比如行人行为预测或者是交通流量分析,则需要进一步优化上述提到的技术方案: - 对于短周期内的快速响应需求,轻量级网络设计显得尤为重要;而对于长期趋势判断而言,则可能更多关注全局上下文信息获取以及跨时段关联挖掘等方面的工作进展情况[^4]。 以下是基于PyTorch框架的一个简单示例代码片段展示如何构建一个用于时间序列分类的任务模型: ```python import torch.nn as nn class TimeSeriesClassifier(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(TimeSeriesClassifier, self).__init__() # 定义CNN层提取局部特征 self.cnn_layers = nn.Sequential( nn.Conv2d(1, 64, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) # LSTM层捕获时间维度上的依赖关系 self.lstm_layer = nn.LSTM(input_size=input_size, hidden_size=hidden_size, batch_first=True) # 输出全连接层映射至类别数 self.fc_output = nn.Linear(hidden_size, num_classes) def forward(self, x): cnn_out = self.cnn_layers(x.unsqueeze(1)) # 增加通道维数 lstm_in = cnn_out.view(cnn_out.size(0), -1).unsqueeze(-1) # 调整形状适应LSTM输入 _, (hn, _) = self.lstm_layer(lstm_in.permute(0, 2, 1)) out = self.fc_output(hn[-1]) return out ```
评论 47
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值