本文中,我会根据下大家image classification常用的cnn模型,针对cifar10(for 物体识别),mnist(for 字符识别)& ImageNet(for 物体识别)做一个model 总结。
- 本文不讲coding(coding请见Convolution Neural Network (CNN) 原理与实现篇)
- 本文不涉及公司内部资料,纯公开资料汇总
好,本文就从数据集说起,对数据集不熟悉的小伙伴请先去了解下这3个数据集,下面我们针对每个数据集画出其通用模型。
===================================
1. Cifar10
60000张32*32彩色图,10类,每类5000张用于training,1000张用于testing,通常做object recognition/classification。
模型:(上面写的数字是该层节点数)
深度学习图像分类模型总结

本文总结了常用深度学习模型在图像分类任务上的应用,包括CIFAR10、MNIST和ImageNet数据集。针对CIFAR10,介绍了模型结构;对于MNIST,提到了LeNet模型;在ImageNet部分,详细解析了2012年AlexNet的网络层配置,并简要提及2014年的GoogLeNet。文章旨在帮助读者理解这些模型的基本结构和工作原理。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



