Image classification with deep learning常用模型

本文总结了常用深度学习模型在图像分类任务上的应用,包括CIFAR10、MNIST和ImageNet数据集。针对CIFAR10,介绍了模型结构;对于MNIST,提到了LeNet模型;在ImageNet部分,详细解析了2012年AlexNet的网络层配置,并简要提及2014年的GoogLeNet。文章旨在帮助读者理解这些模型的基本结构和工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文中,我会根据下大家image classification常用的cnn模型,针对cifar10(for 物体识别),mnist(for 字符识别)& ImageNet(for 物体识别)做一个model 总结。

好,本文就从数据集说起,对数据集不熟悉的小伙伴请先去了解下这3个数据集,下面我们针对每个数据集画出其通用模型。


===================================


1. Cifar10

60000张32*32彩色图

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值