练习参考PCA and Whitening,与上一个练习基本一致。
更改图像数据的均值
avg = mean(x,1);
x = x - repmat(avg,size(x,1),1);
Implement PCA to obtain xRot
xRot = zeros(size(x));
sigma = x * x' / size(x,2);
[u,s,v] = svd(sigma);
xRot = u' * x;
Check your implementation of PCA
covar = zeros(size(x, 1));
covar = xRot * xRot' / size(xRot,2);
Find k, the number of components to retain
k = 0; % Set k accordingly
all = sum(diag(s));
for i=1:size(s,1)
if sum(diag(s(1:i,1:i))) / all >= 0.99
k = i;
break;
end
end
xHat = zeros(size(x));
xTilde = u(:,1:k)' * x;
xHat = u(:,1:k) * xTilde;
epsilon = 0.1;
xPCAWhite = zeros(size(x));
xPCAWhite = diag(sqrt(1./(diag(s) + epsilon))) * xRot;
covar = xPCAWhite * xPCAWhite' / size(xPCAWhite,2)
xZCAWhite = zeros(size(x));
xZCAWhite = u * xPCAWhite;
本文介绍了如何使用主成分分析(PCA)对图像数据进行预处理,并实现数据降维及白化处理。文中详细展示了如何计算图像数据的平均值并去除,通过SVD分解协方差矩阵来获取旋转后的特征向量,同时提供了如何选择保留主成分数量的方法。此外还介绍了如何进行PCA降维、PCA白化以及ZCA白化等操作。
520

被折叠的 条评论
为什么被折叠?



