Exercise:Softmax Regression 代码示例

练习参考Softmax Regression












































softmaxCost.m 中加入代码:

M = theta*data;
M = exp(bsxfun(@minus, M, max(M, [], 1)));
P = bsxfun(@rdivide, M, sum(M));
M = log(P);
WD = lambda / 2 * sum(sum(theta.^2)); 
cost = -sum(sum(groundTruth.*M)) / size(M,2) + WD;
thetagrad = -(groundTruth - P) * data' ./ size(data,2) + lambda.*theta;


softmaxPredict.m中加入代码:

m = theta * data;  
[~,pred] = max(m);


softmaxExercise.m中设置DEBUG为false,运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值