非负矩阵分解(NMF)

非负矩阵分解(NMF)是一种将非负矩阵分解为两个非负矩阵的技术,常用于图像识别、文档分析和生物信息学等领域。本文详细介绍了NMF的原理、实现方式,包括R语言和Julia的实现,并探讨了其在不同场景的应用。
摘要由CSDN通过智能技术生成

通常的矩阵分解会把一个大的矩阵分解为多个小的矩阵,但是这些矩阵的元素有正有负。而在现实世界中,比如图

像,文本等形成的矩阵中负数的存在是没有意义的,所以如果能把一个矩阵分解成全是非负元素是很有意义的。在

NMF中要求原始的矩阵的所有元素的均是非负的,那么矩阵可以分解为两个更小的非负矩阵的乘积,这个矩阵

有且仅有一个这样的分解,即满足存在性唯一性

 

Contents

 

   1. NMF问题描述

   2. NMF实现原理

   3. NMF的应用

   4. NMF的R实现

   5. NMF的Julia实现

   6. 结束语

 

 

1. NMF问题描述

 

   传统的NMF问题可以描述如下

 

   给定矩阵,寻找非负矩阵和非负矩阵,使得

 

   分解前后可理解为:原始矩阵的列向量是对左矩阵中所有列向量的加权和,而权重系数就是右矩阵对应列

   向量的元素,故称为基矩阵,为系数矩阵。一般情况下的选择要比小,即满足

   这时用系数矩阵代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩阵,从而减少存储空

非负矩阵分解(Non-negative Matrix Factorization,简称NMF)是一种常用的矩阵分解方法,它可以将一个非负矩阵分解为两个非负矩阵的乘积。NMF在数据挖掘、图像处理、文本挖掘等领域有广泛的应用。 在Matlab中,可以使用NMF工具箱来进行非负矩阵分解NMF工具箱提供了一系列函数,可以方便地进行NMF的计算和分析。 首先,你需要安装NMF工具箱。可以在Matlab的官方网站或者第三方网站上找到并下载安装包。安装完成后,你可以通过以下步骤来使用NMF工具箱进行非负矩阵分解: 1. 导入数据:将你要进行NMF非负矩阵导入到Matlab中,可以使用Matlab提供的函数如`load`或者`csvread`来导入数据。 2. 调用NMF函数:使用NMF工具箱提供的函数来进行非负矩阵分解。常用的函数包括`nmf`和`nnmf`。这些函数通常需要指定分解的维度、迭代次数等参数。 3. 获取分解结果:根据函数的返回值,可以获取到分解后的两个非负矩阵。这两个矩阵可以表示原始矩阵的近似或者特征。 4. 进行后续分析:根据需要,你可以对分解后的矩阵进行进一步的分析和处理。例如,可以计算重构误差、可视化分解结果等。 除了NMF工具箱,Matlab还提供了其他一些函数和工具,可以用于非负矩阵分解。例如,`nnls`函数可以用于非负最小二乘问题的求解,`nmfnnls`函数可以用于非负矩阵分解的迭代求解。 希望以上介绍对你有帮助!如果你有更多关于NMF或者Matlab的问题,请继续提问。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值