NMF(非负矩阵分解)

本文介绍了非负矩阵分解(NMF)的基本概念,它通过将非负矩阵分解为两个非负矩阵的乘积,实现数据的降维。NMF在机器学习和数据挖掘中常用于特征提取和图像处理。在Python中,可以利用sklearn库轻松实现NMF,只需提供数据并指定模型参数即可。

1.算法概述

NMF(Non-negative matrix factorization),即对于任意给定的一个非负矩阵V,其能够寻找到一个非负矩阵W和一个非负矩阵H,满足条件V=W*H,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积。
在这里插入图片描述

  • V矩阵中每一列代表一个观测(observation),每一行代表一个特征(feature);
  • W矩阵称为基矩阵,
  • H矩阵称为系数矩阵或权重矩阵。这时用系数矩阵H代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩阵,从而减少存储空间。

2. 损失函数

在这里插入图片描述
在这里插入图片描述

python代码

在sklearn封装了NMF的实现,可以非常方便我们的使用,其实现基本和前面理论部分的实现是一致的,但是注意sklearn中输入数据的格式是(samples, features):

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值