非负矩阵分解 NMF 总结

本文概述了非负矩阵分解(NMF)的基本概念,包括其在降维和聚类中的应用。讨论了NMF的变形,如Semi-NMF、Convex-NMF、Tri-NMF和Kernel-NMF,并介绍了不同算法,如梯度下降、乘法算法和交替最小二乘法。此外,文章还对比了正交非负矩阵分解与K-means聚类,以及对称正交非负矩阵分解与谱聚类的关系。
摘要由CSDN通过智能技术生成

好难啊,看的头疼。争取十一写出来。

1.非负矩阵分解

假定非负矩阵 X ∈ R d × n X\in R^{d\times n} XRd×n, A ∈ R d × k A\in R^{d\times k} ARd×k, B ∈ R n × k B\in R^{n\times k} BRn×k为矩阵分解后的非负子矩阵,k远小于 d d d n n n.
X + ≈ A + B + T X_+\approx A_+B^T_+ X+A+B+T

  • 降维
    A可以理解为降维后的特征与原始数据之间的关系,B为降维后的数据。
  • 聚类
    A为聚类后每一簇的样本中心点,B为每一个数据的指示矩阵,或者数据的簇划分。
    求解AB的过程常采用最小化代价函数,代价函数常采用误差平方和。
    min ⁡ A ⩾ 0 , B ⩾ 0 ∥ X − A B T ∥ 2 \mathop {\min }\limits_{A \geqslant 0,B \geqslant 0} {\left\| {X - A{B^T}} \right\|^2} A0,B0minXABT2

2.非负矩阵的变形

2.1 Semi-NMF

2.2 Convex-NMF

2.3 Tri-NMF

2.4 Kernel-NMF

3.非负矩阵分解的算法

3.1梯度下降

3.2乘法算法

3.3交替最小二乘法

3.4拟牛顿法
3.5分层分解法

4.正交非负矩阵分解与K-means

目标函数以误差平方和计算:
min ⁡ A ⩾ 0 , B ⩾ 0 ∥ X − A B T ∥ 2 \mathop {\min }\limits_{A \geqslant 0,B \geqslant 0} {\left\| {X - A{B^T}} \right\|^2} A0,B0minXABT2
约束为 B T B = I {B^T}B=I BTB</

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作为一种重要的身份认证的手段,人脸识别已经广泛地应用于管理、安全等各个领域。人脸识别的一个关键性的问题是特征抽取,即如何从众多的特征中寻找最有效的特征。子空间分析法是一种有效的特征抽取方法,而本文所研究讨论的非负矩阵分解(Non-negative Matrix Factorization, NMF)具有一些独特的优点,成为构建特征子空间的一种有效的方法。 非负矩阵分解是一种新的矩阵分解方法,它将一个非负矩阵分解为左右两个非负矩阵的乘积。由于分解前后的矩阵中仅仅包含非负元素,因此原来矩阵中的列向量可解释为对左矩阵中所有列向量(称基向量)的加权和;而权重系数为右矩阵中对应列向量中的元素。这种基于基向量组合的表示形式具有直观的语义解释,反映了人们思维中局部构成整体的概念。与一般矩阵分解方法相比,NMF具有其独特的优点。例如实现起来比较简单,分解的形式和结果具有实际的物理意义等。典型的非监督学习算法,如主分量分析(PCA)、矢量量化(VQ)、独立分量分析(ICA)、因子分析(FA)等,均可以理解为对原始数据矩阵在一定条件限制下进行分解。本文的非负矩阵分解(NMF)算法与上述算法模型类似,是国际上新近提出的一种矩阵分解方法。与其他方法相比,NMF特殊之处在于其对于矩阵分解过程的非负限制,这会得到原始数据基于部分的表示,从而能更好的反映原始数据的局部特征,NMF的这一特性使得其可在诸多领域的应用得到很好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值