转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
半年前便有研究过Polya,无奈当时只是浮在表面。
重新拿起组合数学书,仔细研究了一番。
对于每一种染色,都有一个等价群,例如旋转,翻转等。我们将每一种变换转换成一个置换群,通过置换群得到的都是等价的染色方案</
本文介绍了Polya理论在解决染色问题中的应用,特别是在POJ 2409 Let it Bead问题上的实例解析。通过置换群的概念,解释了如何计算非等价染色方案数,涉及旋转和翻转两种变换。对于每个变换,讨论了循环节的计算方法,并提出了在不同情况下循环节个数的确定方式。最后,给出了基于欧拉函数的复杂度为sqrt(n)的算法总结。
转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
半年前便有研究过Polya,无奈当时只是浮在表面。
重新拿起组合数学书,仔细研究了一番。
对于每一种染色,都有一个等价群,例如旋转,翻转等。我们将每一种变换转换成一个置换群,通过置换群得到的都是等价的染色方案</
2104
1495

被折叠的 条评论
为什么被折叠?