burnside和polya都是解决非等价染色方案的计数工具,最近刚刚学习,做了几道入门题,今天整理一下。
首先将旋转、翻转之类的变换都转变为一个置换,构成一个置换群G。
简单来说,burnside定理就是 非等价染色数 = 在G中单个置换下保持不变的染色数的平均数。
而polya定理说的是一种特殊情况,若有m中颜色,每种颜色不限数量,则在G中的某个置换g下,保持不变的染色数=
mk
,k为置换g的循环个数。
详细描述和证明可以参考组合数学,讲的很透彻,容易理解。
poj1286 Necklace of Beads
最简单的polya应用,旋转情况下置换的循环个数为gcd,翻转情况下分奇偶讨论。
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int main()
{
int n;
while(scanf("%d", &n), ~n)
{
if(!n)
{
printf("0\n");
continue;
}
long long ans = 0;
for(int i = 1; i <= n; i++)
ans += pow(3, __gcd(i, n));
if(n&1) ans += n * pow(3, n/2+1);
else
{
ans += n / 2 * pow(3, n/2+1);
ans += n / 2 * pow(3, n/2);
}
ans /= 2*n;
printf("%lld\n", ans);
}
return 0;
}
hdu3923Invoker
还是polya,多了快速幂和取模处理
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
const int MOD = 1000000007;
LL fp(LL a, LL b)
{
LL ans = 1;
while(b)
{
if(b&1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
int main()
{
int t;
scanf("%d", &t);
for(int cas = 1; cas <= t; cas++)
{
int c, n;
scanf("%d%d", &c, &n);
if(!n)
{
printf("0\n");
continue;
}
long long ans = 0;
for(int i = 1; i <= n; i++)
{
ans += fp(c, __gcd(i, n));
ans %= MOD;
}
if(n&1)
{
ans += n * fp(c, n/2+1);
ans %= MOD;
}
else
{
ans += n / 2 * fp(c, n/2+1);
ans %= MOD;
ans += n / 2 * fp(c, n/2);
ans %= MOD;
}
ans = ans * fp(2*n, MOD-2) % MOD;
printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}
uva10601 Cubes
正方体的变换比较复杂,恒等置换1种,绕对角点旋转4*2种,绕对边中点旋转6*1种,绕面中心旋转3*3种,一共24种。因为颜色数目有限,不能直接套用polya,只能burnside对每种置换用组合数讨论染色数。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
int n;
int a[13], u[13];
LL c[13][13];
void init()
{
memset(c, 0, sizeof(c));
c[0][0] = 1;
for(int i = 1; i <= 12; i++)
{
c[i][0] = 1;
for(int j = 1; j <= i; j++)
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
}
LL sol(int k)
{
LL ret = 1;
int tn = 0;
for(int i = 0; i < n; i++)
{
if(u[i] % k)
return 0;
u[i] /= k;
tn += u[i];
}
for(int i = 0; i < n; i++)
{
ret *= c[tn][u[i]];
tn -= u[i];
}
return ret;
}
LL burnside()
{
LL ans = 0;
memcpy(u, a, sizeof(a));
ans += sol(1);
memcpy(u, a, sizeof(a));
ans += 8 * sol(3);
memcpy(u, a, sizeof(a));
ans += 6 * sol(4);
memcpy(u, a, sizeof(a));
ans += 3 * sol(2);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
if(a[i] && a[j])
{
memcpy(u, a, sizeof(a));
u[i]--;
u[j]--;
if(u[i] >= 0 && u[j] >= 0)
ans += 6 * sol(2);
}
ans /= 24;
return ans;
}
int main()
{
int t;
init();
scanf("%d", &t);
while(t--)
{
memset(a, 0, sizeof(a));
for(int i = 0; i < 12; i++)
{
int x;
scanf("%d", &x);
a[x]++;
}
sort(a, a+7, greater<int>());
n = 0;
while(a[n])
n++;
printf("%lld\n", burnside());
}
return 0;
}
POJ2154 Color polya+欧拉函数优化
n种颜色构成长度为n的环,不限颜色数,典型的polya,不过n的范围很大,不可能枚举每种旋转置换,可以用欧拉函数优化。
第i个旋转的置换循环个数为gcd(i,n),可以看出gcd的种类数不会超过n的约数的个数,因为所有的gcd都是n的约数。
对于某一类gcd(i,n)=d的情况,i满足i%d=0&&gcd(i/d,n/d)=1,并且i<=n,所以循环个数为d的情况个数为n/d以内与n/d互质的数,即欧拉函数
ϕ(n/d)
。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN = 33000;
int n, p;
int pri[MAXN];
bool prime[MAXN];
void init()
{
int cnt = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i < MAXN; i++)
if(prime[i])
{
pri[cnt++] = i;
for(int j = i<<1; j < MAXN; j += i)
prime[j] = false;
}
}
int phi(int x)
{
int ans = x;
for(int i = 0; pri[i]*pri[i] <= x; i++)
if(x % pri[i] == 0)
{
ans -= ans / pri[i];
while(x % pri[i] == 0)
x /= pri[i];
}
if(x > 1)
ans -= ans / x;
return ans%p;
}
int quickpow(int a, int b)
{
int ans = 1;
a %= p;
while(b)
{
if(b&1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans;
}
int main()
{
int t;
init();
scanf("%d", &t);
while(t--)
{
int ans = 0;
scanf("%d%d", &n, &p);
for(int i = 1; i*i <= n; i++)
if(n % i == 0)
{
if(i*i==n)
ans = (ans + quickpow(n, i-1) * phi(i) % p) % p;
else
ans = (ans + quickpow(n, i-1)*phi(n/i)%p + quickpow(n, n/i-1)*phi(i)%p) % p;
}
printf("%d\n", ans);
}
return 0;
}
POJ2888 Magic Bracelet burnside+矩阵快速幂求解+欧拉优化
m种颜色构成长度为n的环,颜色不限,但是有k种相邻限制。将相邻情况抽象成一个m*m矩阵M,能相邻为1,不能为0。在循环个数为d的某个置换下,对这d个循环的染色方案可以看成一条度为d的个数,合法路径数即为
Md
中对角线和。欧拉优化和上题POJ2154 Color 一样。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int MOD = 9973;
const int MAXN = 36000;
struct MAT
{
int mat[13][13];
MAT() {memset(mat, 0, sizeof(mat));}
};
MAT mp;
int m;
int pri[MAXN];
bool prime[MAXN];
void init()
{
int cnt = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i < MAXN; i++)
if(prime[i])
{
pri[cnt++] = i;
for(int j = i<<1; j < MAXN; j += i)
prime[j] = false;
}
}
int phi(int x)
{
int ans = x;
for(int i = 0; pri[i]*pri[i] <= x; i++)
if(x % pri[i] == 0)
{
ans -= ans / pri[i];
while(x % pri[i] == 0)
x /= pri[i];
}
if(x > 1)
ans -= ans / x;
return ans%MOD;
}
MAT mul(MAT a, MAT b)
{
MAT ans;
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
for(int k = 1; k <= m; k++)
ans.mat[i][j] = (ans.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return ans;
}
MAT matpow(MAT a, int b)
{
MAT ans;
for(int i = 1; i <= m; i++)
ans.mat[i][i] = 1;
while(b)
{
if(b&1) ans = mul(ans, a);
a = mul(a, a);
b >>= 1;
}
return ans;
}
int sol(int x)
{
MAT c = matpow(mp, x);
int ret = 0;
for(int i = 1; i <= m; i++)
ret = (ret + c.mat[i][i]) % MOD;
return ret;
}
int qpow(int a, int b)
{
int ans = 1;
a %= MOD;
while(b)
{
if(b&1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
int main()
{
int t;
init();
scanf("%d", &t);
while(t--)
{
int n, k;
scanf("%d%d%d", &n, &m, &k);
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
mp.mat[i][j] = 1;
while(k--)
{
int x, y;
scanf("%d%d", &x, &y);
mp.mat[x][y] = mp.mat[y][x] = 0;
}
int ans = 0;
int i;
for(i = 1; i*i < n; i++)
if(n % i == 0)
ans = (ans + phi(i) * sol(n/i) + phi(n/i) * sol(i)) % MOD;
if(i*i == n)
ans = (ans + phi(i) * sol(i)) % MOD;
ans = (ans * qpow(n, MOD-2)) % MOD;
printf("%d\n", ans);
}
return 0;
}
HDU Birthday Toy burnside+矩阵找规律+欧拉优化
和上题POJ2888 Magic Bracelet 类似,多了个中间的节点,特殊考虑即可,ans = burnside(n, k-1) * k。
这题颜色种类数k很大,不能直接处理M矩阵,但可以看出M有规律,要求不能相同的颜色相邻,即M矩阵中对角线为0,其余为1。M的自幂矩阵中只有两个值,对角线上的x,和非对角线的y,并且x、y满足
xi=(m−1)∗yi−1,yi=xi−1+(m−2)∗yi−1,x0=1,y0=0
Md
的对角线和即为
xd∗m
最后注意除以n用逆元处理。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 36000;
struct MAT
{
LL mat[3][3];
MAT() {memset(mat, 0, sizeof(mat));}
};
int m = 2;
int pri[MAXN];
bool prime[MAXN];
void init()
{
int cnt = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i < MAXN; i++)
if(prime[i])
{
pri[cnt++] = i;
for(int j = i<<1; j < MAXN; j += i)
prime[j] = false;
}
}
int phi(int x)
{
int ans = x;
for(int i = 0; pri[i]*pri[i] <= x; i++)
if(x % pri[i] == 0)
{
ans -= ans / pri[i];
while(x % pri[i] == 0)
x /= pri[i];
}
if(x > 1)
ans -= ans / x;
return ans%MOD;
}
MAT mul(MAT a, MAT b)
{
MAT ans;
for(int i = 1; i <= m; i++)
for(int j = 1; j <= m; j++)
for(int k = 1; k <= m; k++)
ans.mat[i][j] = (ans.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return ans;
}
MAT matpow(MAT a, int b)
{
MAT ans;
for(int i = 1; i <= m; i++)
ans.mat[i][i] = 1;
while(b)
{
if(b&1) ans = mul(ans, a);
a = mul(a, a);
b >>= 1;
}
return ans;
}
LL sol(int k, int x)
{
MAT ans;
ans.mat[1][2] = k - 1;
ans.mat[2][1] = 1;
ans.mat[2][2] = k - 2;
ans = matpow(ans, x);
return ans.mat[1][1] * k % MOD;
}
LL qpow(LL a, LL b)
{
LL ans = 1;
a %= MOD;
while(b)
{
if(b&1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
LL burnside(int n, int k)
{
LL ans = 0;
int i;
for(i = 1; i*i < n; i++)
if(n % i == 0)
ans = (ans + phi(i) * sol(k, n/i) + phi(n/i) * sol(k, i)) % MOD;
if(i*i == n)
ans = (ans + phi(i) * sol(k, i)) % MOD;
ans = (ans * qpow(n, MOD-2)) % MOD;
return ans;
}
int main()
{
init();
int n, k;
while(~scanf("%d%d", &n, &k))
printf("%lld\n", burnside(n, k-1) * k % MOD);
return 0;
}