TensorFlow-9-词的向量表示

原创 2017年05月19日 23:02:08

今日资料:
https://www.tensorflow.org/tutorials/word2vec
中文版:
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/word2vec.html

这一节是关于 word2vec 模型的,可以用来学习词的向量表达,也叫‘word embeddings’。

之前写过一篇:word2vec 模型思想和代码实现,里面有 skip-gram 算法的简单实现。
http://www.jianshu.com/p/86134284fa14

今天要看的是如何在 TensorFlow 中训练词向量,主要看一下这个代码:
tensorflow/examples/tutorials/word2vec/word2vec_basic.py

词向量就是用一个具有一定维度的向量来表示一个单词,这样在分布式假设的思想下,我们可以认为出现在相同上下文情景中的词汇都有类似的语义。

word2vec 可以很有效地从文本中学习出词向量,主要有两种算法,Continuous Bag-of-Words model (CBOW) 和 Skip-Gram ,CBOW 根据上下文(’the cat sits on the’)来预测目标词汇(例如,‘mat’),而 Skip-Gram 则相反,它通过已知的目标词汇来预测上下文。

通常的 Neural probabilistic language 是通过极大似然法来条件概率:在给定前面语境的情况下,最大化目标词的概率。
而在 word2vec 中不需要用全概率模型,而是用 logistic regression 来把真实的目标词汇和制造的噪音词汇分开

目标函数就是,这个也叫 Negative Sampling,

即现在的 loss function 只和随机选出来的 k 个 噪声单词有关,而不是整个语料库 V,这样训练比较快。


本节的代码就是用一个 Skip-gram 模型来训练词向量:

例如我们有数据集:
the quick brown fox jumped over the lazy dog
假设使用大小为1的窗口,这样就得到这样一个由(上下文, 目标单词) 组成的数据集:
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), …

Skip-Gram 模型是把目标单词和上下文颠倒过来,因此数据集就变成由(输入, 输出)组成的:
(quick, the), (quick, brown), (brown, quick), (brown, fox), …

我们会计算每一对观察值和噪声值的损失函数,例如 sheep 就是个噪音:

整个计算的过程就是我们求出目标函数对 theta 的梯度,然后通过梯度下降法来更新 embedding parameters theta 来最大化目标函数,结果就是 embedding vectors 会不断地移动,直到可以把真实单词和噪声单词很好得区分开。

最后还可以用 t-SNE 来可视化最后的词向量间的距离关系,可以发现具有相似信息的单词距离较近。


1. 先下载数据,words 有17005207 个单词:

url = 'http://mattmahoney.net/dc/'
...
filename = maybe_download('text8.zip', 31344016)
...
words = read_data(filename)

count 就是要统计出 words 里面最高频的 5 万个单词。
dictionary 里的 key 就是 count 里的单词,value 就是频率的排序号。
data 里存的是 words 中每个单词在 dictionary 中的序号,如果不在 5 万里面,就标记为 0.
reverse_dictionary 就是 key value 和 dictionary 里面的互换一下位置:

2. 用 最大长度为 span 的 deque 做一个窗口:

span = 2 * skip_window + 1
buffer = collections.deque(maxlen=span)

从 data 中一个一个读,先把一个窗口给读满。
要生成 batch_size 个样本,
每个样本是,先找到当前窗口的 target,然后在这个窗口中,随机生成 num_skips 个 target-context 对,
即会生成:3084 originated -> 12 as 这样的对。
每次生成完一个样本后,窗口向后移动一位,
一直到生成完 batch_size 个。

embeddings 是先随机生成 5万*128 维,
3. NCE loss 就是训练目标:

4. 用 SGD 优化器去优化目标,
valid_embeddings 是用来检验的 16 个单词的词向量表示,
similarity 是定义验证单词与词汇表中所有单词的相似度:

5. 然后就开始训练模型,num_steps = 100001
每 2000 次迭代后,显示一下平均 loss,
每 10000 次后,计算一下验证单词与所有单词的相似度,并将最相似的 8 个单词显示出来:

6. 最后用 TSNE 将 128 维的词向量降到 2 维,并展示频率最高的 100 个单词:


推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【TensorFlow_Fold】TFF, 初次见面请多指教

TensorFlow_Fold 是在TensorFlow下的一个新的(分支?框架?) 其特点在于更加简化了TF的编码以及对于不定长输入处理的尝试。 虽说目前网络上教程啥的都挺少,但是既然要用到就得学学...
  • okcd00
  • okcd00
  • 2017年03月23日 15:08
  • 735

深度学习中常用的调节参数

一、深度学习中常用的调节参数 原文链接:http://www.cnblogs.com/maohai/p/6453417.html 1、学习率 步长的选择:你走的距离长短,越短当然不会...
  • d5224
  • d5224
  • 2017年05月25日 16:23
  • 1306

Tensorflow教程-字词的向量表示

Vector Representations of Words 在本教程我们来看一下tensorflow/g3doc/tutorials/word2vec/word2vec_basic.py查看...

使用tensorflow实现线性支持向量机

  • 2017年11月11日 09:28
  • 1.22MB
  • 下载

从零开始使用tensorflow(2)——词向量

前面记录了安装过程,现在开始使用词向量。 一.对tf的肤浅认识 首先是tf的基本总结(时间有限,认识比较肤浅): (1). 使用图来表示计算; (2). 在session中执行图; (3...

TensorFlow学习笔记3:词向量

上篇博文讲了如何构建一个简单的CNN模型,并运行在MNIST数据集上。下面讲述一下如何在TensorFlow中生成词向量(Word Embedding),使用的模型来自Mikolov et a...
  • lyb3b3b
  • lyb3b3b
  • 2017年06月19日 20:19
  • 248

Tensorflow中把稀疏的数字类别标签转为向量类型并计算loss和accuracy(附对mnist的损失函数值cross_entropy的理解)

对于N个类别,我们的数据中的标签一般是0,1,2,3,4,..n-1这样的数字 而官方的mnist中的标签是向量类型,比如有5类,那么五个标签大概分别是 ( 原谅我忘记自己确不确定了... ) : ...

Tensorflow实战学习(十八)【词向量、维基百科语料库训练词向量模型】

词向量嵌入需要高效率处理大规模文本语料库。word2vec。简单方式,词送入独热编码(one-hot encoding)学习系统,长度为词汇表长度的向量,词语对应位置元素为1,其余元素为0。向量维数很...
  • WuLex
  • WuLex
  • 2017年11月20日 09:23
  • 121

tensorflow : 使用预训练词向量

目前使用深度网络进行文本任务模型训练时,第一步应该是将文本转为词向量进行处理。但一般词向量的效果跟语料的大小有关,而处理任务的语料不足支持我们的实验,这时就需要使用网上公开的大规模语料训练词向量。1、...
  • lxg0807
  • lxg0807
  • 2017年05月19日 10:21
  • 4041
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TensorFlow-9-词的向量表示
举报原因:
原因补充:

(最多只允许输入30个字)