本文结构:
- kaggle 是什么
- 如何参赛
- 解决问题一般步骤
- 进一步:
- 如何探索数据
- 如何构造特征
- 提交结果
kaggle 是什么?
Kaggle 是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决。
https://www.kaggle.com/
点击导航栏的 competitions 可以看到有很多比赛,其中正式比赛,一般会有奖金或者工作机会,除了正式比赛还有一些为初学者提供的 playground,在这里可以先了解这个比赛,练习能力,再去参加正式比赛。
https://www.kaggle.com/competitions
如何参赛?
以 playground 中的这个 House Prices 预测为例,
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
Overview: 首先在 overview 中仔细阅读问题的描述,这个比赛是让我们预测房价,它会给我们 79 个影响房价的变量,我们可以通过应用 random forest,gradient boosting 等算法,来对房价进行预测。
Data:在这里给我们提供了 train 数据集,用来训练模型;test 数据集,用来将训练好的模型应用到这上面,进行预测,这个结果也是要提交到系统进行评价的;sample_submission 就是我们最后提交的 csv 文件中,里面的列的格式需要和这里一样。
Kernels:可以看到一些参赛者分享的代码。
Discussion:参赛者们可以在这里提问,分享经验。
Leaderboard:就是参赛者的排行榜。
参加 kaggle 最简单的流程就是:
第一步:在 Data 里面下载三个数据集,最基本的就是上面提到的三个文件,有些比赛会有附加的数据描述文件等。
第二步:自己在线下分析,建模,调参,把用 test 数据集预测好的结果,按照 sample_submission 的格式输出到 csv 文件中。
第三步:点击蓝色按钮 ’Submit Predictions’ ,把 csv 文件拖拽进去,然后系统就会加载并检验结果,稍等片刻后就会在 Leaderboard 上显示当前结果所在的排名位置。
上传过一次结果之后,就直接加入了这场比赛。正式比赛中每个团队每天有 5 次的上传机会,然后就要等 24 小时再次传结果,playground 的是 9 次。
解决问题一般步骤?
应用算法解决 Kaggle 问题,一般会有以下几个步骤:
- 识别问题
- 探索数据
- 数据预处理
- 将 train.csv 分成 train 和 valid 数据
- 构造新的重要特征数据
- 应用算法模型
- 优化模型
- 选择提取重要特征
- 再次选择模型,进行训练
- 调参
- 重复上述过程,进一步调优
- 预测
当然上面是相对细的分步,如果简化的话,是这么几大步:
- 探索数据
- 特征工程
- 建立模型
- 调参
- 预测提交
之前写过一篇文章,《一个框架解决几乎所有机器学习问题》
http://blog.csdn.net/aliceyangxi1987/article/details/71079448
里面的重点是介绍了常用算法模型一般需要调节什么参数,即第四步。
还有这篇,《通过一个kaggle实例学习解决机器学习问题》
http://blog.csdn.net/aliceyangxi1987/article/details/71079473
主要介绍了第三步建立模型的部分,包括 ensemble 的例子。
今天这篇文章算是一个补充,在观察数据和特征构造上学习几种常用的方式。
如何探索数据?
以 House prices 为例,探索数据常用方法有以下 6 步。
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
1. 首先,在 data_description.txt 这里有对 79 个变量含义非常详细的描述
我们可以先通过阅读变量含义,根据常识猜测一下,哪些变量会对预测结果有比较重要的影响。
例如:
OverallQual: Overall material and finish quality 物料和质量应该是很重要的组成。
GrLivArea: Above grade (ground) living area square feet 面积也是明显的因素。
YearBuilt: Original construction date 时间也有影响。
2. 接着,对要预测的目标数据 y 有一个宏观的把握,这里是输出 summary,也可以用 boxplot,histogram 等形式观察
df_train['SalePrice'].describe()
count 1460.000000
mean 180921.195890
std 79442.502883
min 34900.000000
25% 129975.000000
50% 163000.000000
75% 214000.000000
max 755000.000000
Name: SalePrice, dtype: float64
count 就是有多少行观察记录,另外注意一下 min 并未有小于 0 的这样的不合理的数值。
3. 通过 Correlation matrix 观察哪些变量会和预测目标关系比较大,哪些变量之间会有较强的关联
#correlation matrix
corrmat = df_train