关闭

白话空间统计十九:热点分析(中)

标签: 空间统计r语言Getis-Ord Gi空间自相关聚类
3533人阅读 评论(2) 收藏 举报
分类:

在前面的话:白话空间统计系列还继续更新,因为这段时间在对《使用R语言进行空间统计》系列进行翻译翻译和编写,所以白话空间统计系列和使用R语言进行空间统计可能会交替出现,给大家的阅读带来的不便,请大家谅解(其实虾神想说的心里话是:你们需要的去翻虾神的历史文章,复习一下前面的内容吧!喔呵呵呵呵!)


前文再续,书接上一回。

继续说热点分析与热度图的问题。

最简单的热度图是没有任何属性要求的,一个点,就是一个值,既没有权重,也没有属性约束。但是实际上,每个点代表什么意义,要对那些属性进行分析,这些都是很重要的。

引用毛博士的名言:凡是不考虑属性的空间分析,都是耍流氓……

当然,热度图因为其对信息的描述简洁明了,为广大人民群众喜闻乐见,所以专业领域的“热点分析”就被很多人脑补成了热度图。

不过正如易经里面的“观”卦所言:童观,小人无咎,君子吝。也就是说幼稚的观点,对于庶民百姓,芸芸众生来说是很合理的,因为这种思想符合他们的身份地位。但是对于有志于教化天下的君子来说,还抱持这样幼稚的观点,就是一种耻辱了。

换成同样喜闻乐见的俗话,就是:外行看热闹,内行看门道。

好了情怀问题到此结束,下面还是回到理工科的路子上来。

首先热点分析用的算法,依然是Getis-Ord Gi*,看到这个名词是不是觉得很眼熟啊?没错,就是在高/低值聚类的时候说过的那个Getis-Ord General G算法的局部版本。所以称为Getis-Ord Gi*,也就是美国乔治敦大学麦克多诺商学院(McDonough School of Business)的J. Keith Ord和圣地亚哥州立大学地理系的Arthur Getis,即下面这两位老帅哥提出的:


关于Getis-Ord General G算法的具体描述,大家去看白话空间统计十四章里面的内容。

类比一下全局Moran's I和局部Moran's I的说法,把名称一换,就可以类比出Getis-Ord General G和Getis-Ord Gi*的不同了,如下图(偷懒一下,直接用老图片了):


Getis-Ord Gi*会给你输入的每一个要素一个值,而不是所有的要素给出一个整体值。

因为其与Local Moran's I非常相像,所以我下面将他与Local Moran's I做一个简单的比较:


最后我们来看一个结果(以下结果用R语言编写,脚本和数据在下期放出)


这是2004年美国大选,对各县区对小布什的投票数进行的热点分析,可以看见最高热的区域就是德克萨斯州……这也是老布什和小布什两代总统的家乡,小布什在当选总统之前,于1995年-2000在德州当了5年的州长,必须的老根据地。

还有一个很有意思的地方,就是有钱人多的地方,对小布什的投票都是低值聚类,比如加州,比如纽约……小布什同学当选,难道就是传说中的“得屌丝者得天下”么?

好吧,关于美国选举格局的解读,我们这些技术宅的并不在行。不过最后要强调的一点还是,热点图和热度图完全不相干……如果用热度图的方式来解读这张图的话,小布什怎么可能当选?大家说是吧。

待续未完

3
0
查看评论

白话空间统计十九:热点分析(上)

通过得到的 z 得分和 p 值,我们可以知道高值或低值要素在空间上发生聚类的位置。但是这个工具的工作方式有些特殊:它查看邻近要素环境中的每一个要素。高值要素往往容易引起注意,但可能不是具有显著统计学意义的热点。要成为具有显著统计需意义的热点,要素应具有高值,且被其他同样具有高值的要素所包围。
  • allenlu2008
  • allenlu2008
  • 2015-10-18 21:11
  • 5344

白话空间统计十九:热点分析(下):结果解读以及用R语言实现

热点和获胜(选票的多少)是没有任何关系的,唯一的关系,就是热点区域表示没有杂质的获胜。用通俗的话来说,就是:在这个区域内,只要任何一个区域获胜,那么就可以推定,周边的区域一样会获胜。同理,冷区也是如此。
  • allenlu2008
  • allenlu2008
  • 2015-11-20 20:45
  • 5125

白话空间统计之十:标准距离

标准距离在空间统计里面也是一个常用的方法,因为它可提供有关中心周围要素分布的单一汇总度量值(此方法类似于通过标准差测量统计平均值周围数据值的分布)。
  • allenlu2008
  • allenlu2008
  • 2015-08-20 13:54
  • 4403

白话空间统计之:空间自相关

空间自相关,肯定是空间统计里面第一个拦路虎了,很多人遇上了这个高大上的词汇,立刻就发现,这五个字我好像都认识,但是到底说了啥?不知道。如果翻开各种教材,从统计学到数学到物理学,各种解释都摆出了一副“老子就是高大上学霸,屌丝学渣勿扰”的样子,这个东西真得就那么难么?
  • allenlu2008
  • allenlu2008
  • 2015-07-27 21:58
  • 13530

白话空间统计二十一:密度分析(一)

白话空间统计二十一:密度分析(一) 密度分析这个概念其实很早就想写了,也有无数同学都问过我,虾神你能不能讲讲那些漂亮的热度图是怎么做的啊?比如下面这种: 如果说,这是互联网地图里面,最让人喜闻乐见的一种空间分析模式(或者是看热闹的同学就认为是一种漂亮的可视化方式也行),让以百度热...
  • allenlu2008
  • allenlu2008
  • 2016-04-22 23:47
  • 6041

白话空间统计之六:平均最近邻

平均最近邻可以得出一份数据的具体聚集程度的指数,通过这个指数,可以对比不同数据中,哪个数据的聚集程度最大。适用于对固定研究区域中不同的要素进行比较。比如在同一城市范围内,不同类型的企业之间的分布情况的研究;或者同一类型的企业,在固定区域以内,随着不同年份的变化情况的研究。
  • allenlu2008
  • allenlu2008
  • 2015-08-11 15:49
  • 4742

白话空间统计二十二:空间尺度(一)

俗话说:世事无绝对。 人类对于任何事务首先的第一评价方式,就是对比。如果没有对比的话,单纯的数字会让我们觉得有些不知所措。比如这句话“某校今年招生500人”,那么你怎么评价呢?招了很多人?还是才招了这么一点点?但是加上对比之后,就不一定了,比如“A校招生100人,B校招生500人”……这样一说...
  • allenlu2008
  • allenlu2008
  • 2016-08-23 16:59
  • 1568

白话空间统计番外三:空间统计的基础理论

空间统计学是统计学的一个分支,有很多与统计学相同的地方,也有很多有自身特点的,地方,今天我们就来聊聊空间统计学的四大基础理论: 首先就是空间概率 统计学是一门计算很研究概率的学问,一般的描述方式都是“xx事的发生概率是百分之xx”,因为对于任何事情的预测,都是处于不稳定状态。 ...
  • allenlu2008
  • allenlu2008
  • 2016-08-15 15:05
  • 2127

白话空间统计之九:方向分布(标准差椭圆)修正版

方向分布工具在空间统计中是综合能力最突出的工具之一,有着广泛的应用,在我们的分析和数据探索的时候,能够起到非常重大的作用。
  • allenlu2008
  • allenlu2008
  • 2015-08-19 14:43
  • 8725

白话空间统计之五:空间关系的概念化(上)

空间统计分析与传统的统计分析,最大的区别就在于空间统计学把空间信息和空间关系都直接整合到了算法之中。如果取消掉空间相关的特性,空间统计学与传统统计学就没有多大的区别了。   因此在做空间统计时,都要求在分析之前进行“空间关系的概念化”。这个名词说起来很绕口,其实意思就是,你需要在分析时候,...
  • allenlu2008
  • allenlu2008
  • 2015-08-06 16:40
  • 3908
    个人资料
    • 访问:553163次
    • 积分:7183
    • 等级:
    • 排名:第3748名
    • 原创:177篇
    • 转载:4篇
    • 译文:3篇
    • 评论:214条
    文章分类
    最新评论