代码+视频,R语言对数据进行多重插补后回归分析

本文介绍了在临床研究中如何利用R语言的Mice包进行数据缺失的多重插补,并展示了通过实例代码完成插补和后续数据分析的过程,包括模型拟合和汇总结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在临床做回顾性研究分析中经常要面对数据缺失的问题,如果数据缺失量大就会对我们的研究结果产生影响,近年来,对数据进行多重插补广泛应用于SCI论文中。我们在之前的文章中已经演示了使用SPSS对数据进行多重插补并分析。今天,我们通过视频演示使用R语言的Mice包来演示多重插补并对数据进行分析。

在这里插入图片描述

R语言对数据插补并进行分析

代码

library(survival)
library(rms)
library(mice)
bc<-mgus
summary(bc)
md.pattern(bc)
densityplot(bc$alb)
#########
imp<-mice(bc,m = 5,maxit=5,seed =123) #maxit 迭代的次数
imp<-mice(bc)
complete(imp)
c3 <- complete(imp, 3)
md.pattern(c3)
summary(c3)
densityplot(c3$alb)
##########
stripplot(imp,pch=19,cex=1.2,alpha=.3)
fit<-with(imp,glm(death~age+sex+dxyr+pcdx,family = binomial))
fit1<-pool(fit)
summary(fit1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值