关闭

白话空间统计十九:热点分析(下):结果解读以及用R语言实现

标签: 空间统计Getis-Ord Gi聚类热点分析Hotspot
5173人阅读 评论(0) 收藏 举报
分类:

白话空间统计十九:热点分析(下):结果解读以及用R语言实现

 

前文再续,书接上一回。

 

上回说到通过Getis-OrdGi*2004年美国大选进行热点分析,得出了这样一张结果:


如果没有看前面文章,就有人会掐指虾神的脖子问:为毛这么难看!人家百度的热点图多

漂亮啊!你这个为毛会这么丑!

 

好吧,再次强调一个说法:百度那个叫做热度图,是专门用来表示人员密集度的,和专业

的热点分析没有关系。

 

英文的HotSpot最早是起源于地质学中的“地幔柱”,专业的解释如下:

 

从软流圈或深部地幔涌起并穿透岩石圈的一股固体物质热塑性流,呈圆柱状者称地幔柱

(热柱),呈羽缕状者称地幔羽(热羽)。地幔柱(热羽柱)在洋底或地表出露时即

为热点,热点(hot spots)是地幔柱(mantle plume)的一种表现。热点上的地热

流值大大高于周围广大地区,甚至会形成孤立的火山。

 

好吧,我知道你们不懂。。。因为我不懂……不过,下面这张图片,就是一个著名

的热点爆发的效果:


 

 

看见了吧……哪里有一点点多的意思?概念里面的几个关键字:“在地表露出时”

、“表现”,可以看出,所谓的Hot Spot其实是一种深层次(地底几千公里)的

现象的表现。通过它,地质学家用来研究大陆板块。那么在空间统计里面,我们

也是通过它,来对某些隐藏的信息进行挖掘。


如果说这个概念太专业的话,第二个热点的说明就是你百度第一个出来的东西

“无线热点”,如下图:


 

看到这个概念,你再问问自己,用手机连接wifi的时候,是点越多越好么?你一次

能连多少个wifi点?作为一个潜伏在GIS圈子里面的二流计算机专业码农,虾神可以

很负责任的告诉你——你手机搜索到的wifi热点越多,就说那么地方通信质量越差

……信号之间的干扰就越严重!

 

所以,看过这篇博客的同学,从今天开始,再也不要把热点分析和热度图放在一起来聊了。


那么如何解读空间统计中的热点图呢?还是看我们昨天做的那张图:


 

我在图片上显著的标识出了一个“热点区域”(红色的)一个“冷点区域”(蓝色)的,

这个热点是什么意思呢?他的意思是,他不但本身的数值很高,而且他周边的数值也很

高,是高值和高值的聚集区。同样的,冷点表示什么呢?冷点表示的是不但本身的值很

低,旁边的值也很低,就是所谓的低值和低值的聚集区。

 

那么可能就有同学问我,冷点,是不是表示小布什的票数目很少呢?看下面这张图:


红色表示小布什获胜的区域,蓝色表示克里获胜的区域。

 

当两张图进行对比的时候,我们发现热点和获胜(选票的多少)是没有任何关系的,

唯一的关系,就是热点区域表示没有杂质的获胜。用通俗的话来说,就是:

在这个区域内,只要任何一个区域获胜,那么就可以推定,周边的区域一样会获胜。

同理,冷区也是如此。

 

另外,我们看看在热区和冷区中间,也就是美国中东部地区,基本上是红蓝相间,所

以在热点图上,偏向白色的“随机区域”也就是说,在这个区域内,任何一个区获得

了胜利,周边的区域依然是胜负未定状态。

 

好了,下面来解析一下用R语言如何生成这样的热点分析图:

 

#加载sp包,此包在本脚本中主要用于空间可视化。

library(sp)

 

#加载spdep包,此包用于定义空间关系和实现Getis-Ord Gi* 算法

library(spdep)

 

#生成空间关系矩阵

W_cont_el <- poly2nb(data, queen=T)

#定义空间关系为共点共边即为邻近,即Queen's Case

W_cont_el_mat <- nb2listw(W_cont_el, style="W", zero.policy=TRUE)

 

#定义数据投影为WGS84(EPSG:4326)

proj4string(data) <- CRS("+init=EPSG:4326")

 

#执行Getis-Ord Gi*算法,这里叫做localG,全称就是(local Getis-Ord G 局部Getis-ord G指数)

lg1 <- localG(data$Bush_pct, listw=W_cont_el_mat, zero.policy=T)

 

#将计算完成的Getis-Ord Gi*指数(Z得分)赋值给数据里面的lg1属性

data$lg1 <- lg1[]

 

#定义可视化色带,这里用蓝色-白色-红色这样的色带图

lm.palette <- colorRampPalette(c("blue","white", "red"), space = "rgb")

 

#可视化图形

spplot(data, zcol="lg1", col.regions=lm.palette(20), main="Getis-Ord Gi* (z scores)", pretty=T)

 

最后数据和脚本,在以下地址:

 

http://ncportal.esrichina.com.cn/arcgis/home/item.html?id=8902a0c95de34deaa2db82dc8b4c31f8

 

 

0
0
查看评论

R语言矢量数据空间分析一:入门及rgeo包简介

首先确定一个概念,虾神此次在这里讲的“矢量数据空间分析”并非指的是那些高大上的诸如什么空间聚类、密度分析、插值神马的分析,而且专值的“矢量数据”的一些基础的图形操作,更准确的说,应该是指矢量数据相关的几何特征行为的空间关系和空间操作,也就是下面这些OGC规范里面的东西: 实际上这些都是空间分析...
  • allenlu2008
  • allenlu2008
  • 2017-04-21 20:20
  • 2459

白话空间统计十二:R语言对点数据分析的实现(1)

前段时间,有人批评我写白话空间统计的博客是在写软文给ArcGIS平台和Esri打广告,话说这个实在是太恭维我了。如果读到空间统计,而且还能读懂的人,不可能没有听说过ArcGIS软件吧,这种情况到底是先有鸡还是先有蛋,自然一目了然了。   虽然虾神在Esri中国干了好多年了,给公司打打广...
  • allenlu2008
  • allenlu2008
  • 2015-08-22 20:53
  • 2883

R语言:spdep包(空间数据分析与R语言实践)

摘要: 在空间取样中位置越接近的点相应的变量也可能越相近,这种现象称为空间自相关。空间自相关能够改变人们对某些事物原因的判断。举例来说,一个地点物种数高,临近的点物种数也相应得会高些,但这并不一定是由于两个地 ... 在空间取样中位置越接近的点相应的变量也可能越相近,这...
  • zhangyangfeiyu
  • zhangyangfeiyu
  • 2016-10-26 17:07
  • 2019

(GIS可视化)热点分析原理及实现

热度分析原理及实现
  • qq_34149805
  • qq_34149805
  • 2017-04-14 20:55
  • 5352

ArcGIS desktop——“热力图”实现方法比较

ArcGIS桌面端如何实现动态热力图渲染。
  • little_reddy
  • little_reddy
  • 2016-12-09 18:18
  • 13319

白话空间统计二十四:地理加权回归(八)结果解读(一)

地理加权回归分析完成之后,与OLS不同的是会默认生成一张可视化图,像下面这张一样的: 这种图里面数值和颜色,主要是系数的标准误差。主要用来衡量每个系数估计值的可靠性。标准误差与实际系数值相比较小时,这些估计值的可信度会更高。较大标准误差可能表示局部多重共线性存在问题。根据官方的说法,需要检...
  • allenlu2008
  • allenlu2008
  • 2017-06-05 20:21
  • 3028

白话空间统计二十四:地理加权回归(九)结果解读(二)

实际上,除了辅助表以外,GWR还会生成一份全要素的表。对回归的每一个样本都给出相应的信息,今天就来看看这些信息代表了什么内容。 生成的新的要素类字段信息如下: 实际上,Coeffcient(系数)和Standard Error Conffcient (标准差系数)会对每一个解释变...
  • allenlu2008
  • allenlu2008
  • 2017-06-06 16:35
  • 2382

R语言在线地图神器:Leaflet for R包(六,完结篇)栅格、颜色和图例设置

八、栅格数据   栅格数据是当前GIS领域里面最庞大的一类数据(天上N颗卫星24小时无死角的对地球君进行直播……每天生成遥感数据都以PB为单位),leaflet作为地图可视化模块,自然也提供了加载栅格数据的方法。   方法如下: addRasterImage(地图,参数) ...
  • allenlu2008
  • allenlu2008
  • 2016-10-20 13:03
  • 5441

白话空间统计番外:再谈莫兰指数(Moran's I)

经典相关性分析是两条数据(属性维度)之间的相互依赖关系,那么空间自相关就是在空间范围内的相互依赖程度。全局的莫兰指数就是用来衡量空间自相关程度的。在ArcGIS的工具集里面,这个工具干脆就直接叫做“空间自相关”(Spatial Autocorrelation (Global Moran's ...
  • allenlu2008
  • allenlu2008
  • 2016-03-15 14:38
  • 21240

白话空间统计二十一:密度分析(六)R语言实现

今天主要讲讲核密度分析的R语言实现,原理神马的,看前面的文章。 下面贴代码和代码注释,还是老规矩,需要源代码还数据的,通过邮箱获取。
  • allenlu2008
  • allenlu2008
  • 2016-11-21 12:54
  • 1929
    个人资料
    • 访问:559135次
    • 积分:7230
    • 等级:
    • 排名:第3707名
    • 原创:177篇
    • 转载:4篇
    • 译文:3篇
    • 评论:214条
    文章分类
    最新评论