原标题:白话空间统计之二十五:空间权重矩阵(四)R语言中的空间权重矩阵(2):不同空间关系对莫兰指数的影响
上一篇,讲了R语言中的空间权重矩阵的结构,这一节讲讲R语言里面空间权重矩阵的自定义。
与ArcGIS自定义空间权重矩阵一样,R语言的空间权重矩阵如果纯粹从零开始自定义生成,是非常麻烦的事情,所以我们一般先做一个默认的空间关系对象,然后再进行修改。这种方式,用牛爵爷的话来说,叫做“踩在巨人的肩膀上”(当年,牛爵爷说这句话的时候,绝对不是谦虚,而是说:你们就算是巨人,也得老老实实被我踩在脚下)——
言归正传,下面我们来自定义一个空间权重矩阵,还是用中国,但是我按照中国七大区域划分方法:
代码如下:
#东北
db
#华北
hb
#华中
hz
#华东
hd
#华南
hn
#西南
xn
#西北
xb
#进行自定义临近关系
w_cm_cn
ccn
for(area in ccn){
for(i in area){
i_id
temp
for (j in area){
j_id
if(i_id != j_id){
temp
}
}
w_cm_cn[[i_id]]
}
}
#绘制自定义的临近关系
w_cm_cn_mat
plot(cnData)<

本文介绍了如何在R语言中自定义空间权重矩阵,并通过实例展示了不同空间关系对莫兰指数的影响。通过对中国2009年各省GDP的分析,揭示了空间关系选择对区域经济发展空间自相关性的显著影响。
最低0.47元/天 解锁文章
1563

被折叠的 条评论
为什么被折叠?



