白话空间统计番外三:空间统计的基础理论

本文介绍了空间统计学的四大基础理论:空间概率、概率密度、不确定性和统计推断。探讨了空间概率与经典概率的区别,解释了概率密度的概念及其在空间分析中的应用,并讨论了不确定性在空间数据中的重要性。
空间统计学是统计学的一个分支,有很多与统计学相同的地方,也有很多有自身特点的,地方,今天我们就来聊聊空间统计学的四大基础理论:


首先就是空间概率

统计学是一门计算很研究概率的学问,一般的描述方式都是“xx事的发生概率是百分之xx”,因为对于任何事情的预测,都是处于不稳定状态。

那么空间上就更是这样的了,人类绝无可能将地球上任何地方发生的事情都能够完整描述锁着理解,所以只能借助于概率的思考模式来进行理解了。

经典统计学里面,独立事件的联合概率通常都是用各自概率的乘积计算的,比如下面这个比喻:
在一群人里面,高个子(180以上的长腿欧巴)的比例是十分之一,富豪的比例也是十分之一,帅哥的比例是十分之一。那么即是长腿欧巴,有是富豪,还是帅哥三者都具备的概率,就是10% * 10% * 10% = 千分之一……

但是在空间上,并不是这样,空间上的两个点,按照地理学第一定律规则,距离越近的相关性越高,那么按照他们距离来判定,两个点同时发生某件事情的概率,就应该不同于独立事件的概率,如下:



A点与B的滑坡概率如果都是二分之一的话,那么两个点同时发生滑坡的概率,就应该是大于四分之一,且小于等于二分之一。因为任意一点发生滑坡,都有可能影响另外的一个点。

同样的,如果是C点,概率肯定又有不同,而D点的概率,通过空间关系来判定的话,就可以当成独立事件了。这就是空间概率中的一个应用。

其次就是概率密度。

任何事情在任何位置发生都是有一定的概率的,也就是说,带有不确定性。比如我们用GPS进行定位,如果说我们的仪器的误差是5米话,那么测量值的偏差在任意方向都会出现一定的散布,而散布的概率理论上会形成正态分布的对称曲线。在空间上可以把这个分布想象成一个钟形,那么任何一个事件在任意区域发生的概率,就是这个钟表面在这个区域上的所占的体积。



第三是不确定性。
地理信息是现实世界的一个抽象,任何数据都只是一个表达,这样就不可避免的对所要表达的现实世界产生不确定性。而且最关键是这种不确定性是可以传递的,也就说数据的不确定性,最后肯定带来结果的不确定性。

另外不确定性也有可能是测量引起的。还有可能是观察者本身引发,也有可能是数据不完整造成的。所以对于空间分析研究者来说,了解数据中不确定性和研究这些不确定性如何影响分析结果是重中之重。

目前的研究中,不确定性作为很重要的领域,已经有很多成果,比如地统计学,采用随机过程来模拟插值的变异情况,就是不确定性研究的一项成果。


比如“奇峰突起”这种喀斯特地貌的研究中,不确定性就发挥了很大价值。

最后就是统计推断了。
统计推断可以说是科学研究中最重要的工具之一。其通过样本分析推理以求得到关于包括了样本在内的更大群体的结论。

不过在空间分析中,统计推断首先要解决下面这些问题:
样本的选择在何种范围内?有没有可能选择更大范围中的样本?
如何保证选择的样本与其他值之间存在空间相关性?
空间异质性如何保证样本在不同的位置被提取出来的特征?
样本能够代表多大的区域范围?
分析的结果能否推断出关于总体的结论?
对于这些问题的回答,通常都是否定的。因为空间统计与经典统计最大的不同点就在于要素之间的相关性,所以我们在做空间分析的时候,通常是在我们能够获得的所有数据上进行操作,因此很少或者更本没有一个用于提取数据并进行推理的总体概念。而且认为每个样本观测值是独立的观点也是不行的,除非相距很远。
所以空间分析很早就有了现在所谓的大数据分析的思路之一:总体分析,局部验证。


### 关于地理加权回归的学习资源 #### 地理加权回归简介 地理加权回归(Geographically Weighted Regression, GWR)是一种用于处理空间异质性的统计方法,它允许局部估计而不是全局单一的回归系数。这种方法特别适用于研究那些随地理位置而变化的关系模式。 #### 学习资料推荐 对于希望深入了解GWR理论及其实践应用的人士来说,存在多种途径获取高质量的学习材料: - **书籍**: 《Applied Spatial Data Analysis with R》涵盖了广泛的空间数据分析技术,其中包括详细的章节介绍如何利用R语言实现GWR模型[^1]。 - **在线课程**: Coursera平台提供了名为“Spatial Statistics and GIS”的专项课程系列,该课程不仅讲解了基础概念还涉及到了高级主题如GWR的应用场景[^2]。 - **学术论文**: 可以查阅发表在国际知名期刊上的文章,例如Journal of Geographical Systems上的一篇综述性文献全面总结了近年来有关GWR的发展趋势和技术进步[^3]。 #### 实际操作指南 为了帮助初学者更好地掌握这一技能,在实际项目中运用所学知识至关重要。以下是几个具体的指导建议: ##### 使用Stata进行地理加权回归的操作流程 当采用Stata作为主要分析工具时,可以按照以下方式执行GWR建模过程: ```stata * 加载必要的库文件并设置工作路径 * ssc install spregress cd "C:\path\to\your\data" * 导入数据集 * use mydata.dta, clear * 执行地理加权回归命令 * spregress y x1 x2 ..., gwr kernel(gaussian) bandwidth(optimized) * 查看结果输出 * estat summarize predict double pred_y, xb ``` 上述代码片段展示了怎样导入外部数据源以及调用特定函数来进行标准高斯核下的最优带宽选择,并最终预测目标变量值。 ##### Python环境下实施时空地理加权回归(GTWR) 随着Python生态系统的日益成熟和完善,越来越多的研究者倾向于借助其强大的计算能力和丰富的第方包支持开展复杂的数据挖掘任务。下面给出了一段简单的例子说明如何构建GTWR模型: ```python from gtwrap import GTWRModel # 初始化模型对象 model = GTWRModel() # 设置输入特征矩阵X和响应向量Y X = [[...], [...]] # 替换为实际坐标位置和其他协变量组成的列表 Y = [...] # 响应变量对应的观测值序列 # 训练模型 model.fit(X, Y) # 获取拟合后的参数估计 params = model.get_params() print(params) ``` 这段脚本首先创建了一个`GTWRModel`类实例化对象,接着指定了训练样本集合中的自变量部分(含经纬度信息),最后完成了整个学习阶段并通过打印语句展示出了各因子的重要性得分情况[^4]。 #### 应用案例分享 一个典型的应用领域是在城市规划方面——评估房价波动因素的影响程度差异。比如某项研究表明,在大城市中心区域附近交通便利性和教育资源质量往往成为决定住宅价格高低的关键要素;而在郊区则更看重自然环境优美否等因素。通过建立相应的GWR模型可以帮助政府决策部门更加精准地制定土地开发政策和服务设施布局方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾神说D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值