caffe调参技巧

原创 2016年08月31日 14:50:34

将从今日起开始使用caffe进行人脸识别方面的书写。写博客作为纪念。

将训练的log保存,并使用tools里面的工具进行绘图,出现了如下的train loss曲线,不知道是什么原因。



可以看到test accuracy 也有坡度也太大。

1.有时候会出现测试准确率先升高然后降低的现象

这可能是因为学习率太大了,跨过了最优点

此时需要将学习率降低finetune,如原来准确率为0.01,此时,可以中断训练

设置学习率为0.001finetune


相关文章推荐

caffe accuracy 学习

首先我们先看一下accuracy (在caffe.proto里面)的类定义 message AccuracyParameter {   // When computing accuracy, coun...

Caffe调参相关问题整理

===============  格式范例================ 1. 问题:     问题详细描述:     解决办法:     参考:     提问者:id     致谢:id ====...

caffe调参经验资料文章

调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结 Neural Net...

使用caffe的python接口进行特征提取和人脸验证

近期使用caffe模型进行人脸识别时,需要提取指定网络层中的数据进行特征比较,常见的比如提取全连接层等。本文基于caffe的python接口实现了一个简单的特征提取及人脸验证测试。测试使用的数据是LF...

Caffe调参类问题整理

... 格式示例 ... 1. 问题:     问题详细描述:     解决办法:     参考:     提问者:id     致谢:id ... 1....

CAFFE-调试技巧

原文:www.zhihu.com/question/32673260 13 个回答 程引,爱折腾 知乎用户、薯条、hill 等人赞同 谈谈深度学习中的 Batch_Size Batch_Si...

Caffe 模型微调 的场景、问题、技巧以及解决方案

Caffe 模型微调 的场景、问题、技巧以及解决方案

Caffe调参相关问题整理

【原文:http://blog.csdn.net/ccug_blog/article/details/46866335】 ================ 格式 ==============...

深度学习调参技巧(二)

我们在学习使用深度学习的过程中最最重要的就是调参,而调参的能力是需要长期积累才能形成的,因为每一种数据库和每一种网络结构都需要不同的参数以达到最佳效果。而寻找这个最佳的参数的过程就叫做调参。 ...

caffe 训练自己的数据集—调试技巧篇

调试caffe,用已有的网络训练自己的数据集的时候(我这里做的是二分类)。在生成均值文件之后,开始train,发现出现了这个问题。 1,路径正确,却读不到图片。[db_lmdb.hpp:15] Che...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:caffe调参技巧
举报原因:
原因补充:

(最多只允许输入30个字)