caffe调参技巧

原创 2016年08月31日 14:50:34

将从今日起开始使用caffe进行人脸识别方面的书写。写博客作为纪念。

将训练的log保存,并使用tools里面的工具进行绘图,出现了如下的train loss曲线,不知道是什么原因。



可以看到test accuracy 也有坡度也太大。

1.有时候会出现测试准确率先升高然后降低的现象

这可能是因为学习率太大了,跨过了最优点

此时需要将学习率降低finetune,如原来准确率为0.01,此时,可以中断训练

设置学习率为0.001finetune


Caffe调参相关问题整理

===============  格式范例================ 1. 问题:     问题详细描述:     解决办法:     参考:     提问者:id     致谢:id ====...
  • CCUG_blog
  • CCUG_blog
  • 2015年07月13日 18:29
  • 3885

caffe调参经验资料文章

调参是个头疼的事情,Yann LeCun、Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结 Neural Net...
  • langb2014
  • langb2014
  • 2016年03月28日 18:04
  • 5097

caffe调参技巧

将从今日起开始使用caffe进行人脸识别方面的书写。写博客作为纪念。
  • andeyeluguo
  • andeyeluguo
  • 2016年08月31日 14:50
  • 1224

caffe参数调节问题及解决方法

深度学习交流QQ群:116270156 1、学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间。步长的选择比较麻烦。步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),...
  • sinat_24143931
  • sinat_24143931
  • 2017年12月21日 11:11
  • 267

caffe调参经验资料文章

original url: http://www.voidcn.com/blog/langb2014/article/p-5748576.html 调参是个头疼的事情,Yann...
  • junmuzi
  • junmuzi
  • 2016年08月31日 20:59
  • 763

Caffe学习(四)数据层及参数设置

caffe的各种数据层在caffe.proto文件中有定义。通过对定义的caffe.proto文件进行编译,产生支持各种层操作的c++代码。后面将会详细解读caffe.proto文件(在caffe里就...
  • u012177034
  • u012177034
  • 2016年08月06日 08:40
  • 22998

(转)Caffe调参经验资料文章

Caffe调参经验资料文章
  • forest_world
  • forest_world
  • 2016年05月13日 22:54
  • 818

Caffe中网络调参基本套路

刚接触caffe一个多月,感觉迷迷糊糊,最近才稍微明白了点caffe中调参的一些套路,直接上干货吧。 1,一般训练集不大时,最终训练的网络及容易过拟合,也就是说train-loss一定会收敛,但是te...
  • u011231598
  • u011231598
  • 2017年09月01日 17:52
  • 228

caffe深度学习调参笔记+caffe训练时的问题+dropout/batch Normalization

一、深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1、学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间。步长的选择比较麻烦。步长越小,越容易得...
  • dongapple
  • dongapple
  • 2017年07月20日 10:57
  • 3667

CAFFE-调试技巧

原文:www.zhihu.com/question/32673260 13 个回答 程引,爱折腾 知乎用户、薯条、hill 等人赞同 谈谈深度学习中的 Batch_Size Batch_Si...
  • u012968002
  • u012968002
  • 2016年05月20日 16:47
  • 1587
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:caffe调参技巧
举报原因:
原因补充:

(最多只允许输入30个字)