【资讯类】WorldView-3卫星性能公布

DigitalGlobe公司宣布WorldView-3卫星预计于2014年发射,该卫星具备0.31米分辨率的全色影像和8波段多光谱影像能力,同时提供8波段短波红外影像,具有极高的空间分辨率,适用于植被监测、矿产探测、海岸/海洋监测等应用。

      DigitalGlobe公司近期公布了其WorldView-3卫星的最新进展,预计2014年发射。WorldView-3除了提供0.31米分辨率的全色影像和8波段多光谱影像外,还提供8波段短波红外影像。这颗卫星提供的极高空间分辨率,可以分别更小、更细的地物,可以跟航空影像相媲美。拥有的覆盖可见光、近红外、短波红外的波谱特征,使WorldView-3拥有极强的定量分析能力,在植被监测、矿产探测、海岸/海洋监测等方面拥有广阔的应用前景。

     WorldView-3目前正由Ball Aerospace公司建造,该公司设计并制造了DigitalGlobe目前运行的所有卫星。卫星载荷包括短波红外传感器和光学仪器在内的成像仪器则由ITT Exelis公司设计和制造。

      值得一提的是,ENVI/IDL遥感图像处理软件的制造商Exelis VIS公司是ITT Exelis公司的全资子公司。Exelis VIS公司为WorldView1/2研发了支持软件,主要是研制基于流程的影像质量控制(QC)软件平台和为NextView计划提供新的影像质量检测工具。

                                                                  

图 WorldView-3卫星设计图

      DigitalGlobe现有的卫星群由QuickBird、WorldView-1 和WorldView-2组成, WorldView-3将在此基础上进一步扩展这一行业领先的商业成像卫星群的各项功能。该卫星群对地球表面的任何地点均可实现平均每天两次的访问,因而能够准确捕获包括大部分彩色图像在内的全球75%以上的半米分辨率商业图像。

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值