社区发现算法(三)

CPM算法通过寻找网络中的极大完全子图(maximal-cliques)来发现社区结构,尤其是k-派系社区。算法首先找到所有连通的k-派系,构建重叠矩阵,通过设定阈值来识别不同社区。虽然CPM适用于边密集网络,但在稀疏网络中效率较低,且不能处理完全子图外的顶点。寻找极大完全子图是关键,但随机种子方法可能导致重复。
摘要由CSDN通过智能技术生成
派系过滤CPM方法(clique percolation method)用于发现重叠社区,派系(clique)是任意两点都相连的顶点的集合,即完全子图。


在社区内部节点之间连接密切,边密度高,容易形成派系(clique)。因此,社区内部的边有较大可能形成大的完全子图,而社区之间的边却几乎不可能形成较大的完全子图,从而可以通过找出网络中的派系来发现社区。

k-派系表示网络中含有k个节点的完全子图,如果一个k-派系与另一个k-派系有k-1个节点重叠,则这两个k-派系是连通的。由所有彼此连通的k-派系构成的集合就是一个k-派系社区。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值