自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(46)
  • 收藏
  • 关注

原创 Elsevier: Expert Systems With Applications 经验分享

ESWA期刊的时间真的很玄学,快的人2-3个月就走完了流程,但大多数人还是和我一样经历了漫长的时间,特别是DIP阶段,是真的难熬。需要注意的是不同期刊会有一些特别的要求,注意仔细查看作者指南(如ESWA需要highlights,并且每个highlight。返稿和投稿流程差不多,主要是多需要一个一对一回复信(格式要求,返稿邮件有说明),一个标记过的修改稿与原修改稿。除了上面提到的一些文件,其他的是投稿需要的一些文件,可以参考下。正式投稿时根据期刊要求准备标*的文件,就是必须的文件,根据投稿流程走就行了。

2023-07-04 22:18:47 29090 243

原创 React Hooks简介

*和 Redux 中的 Reducer 一样,reducer 必须是一个纯函数,接收一个旧的 state 和一个 action 的对象,根据 action.type 返回一个新的 state,或者不做任何改变返回原有的 state。如果依赖项数组不变,那么每次渲染组件时,useCallback 返回的都是相同的回调函数的引用,这时就可以避免不必要的重复渲染。在函数式组件中,如果不经任何处理的函数通过属性的形式传递给子组件,那么,一旦父组件的任意状态发生变化进行重新渲染时,会因为。

2023-06-06 19:56:57 915

原创 Dayjs获取最近的整点时间(往后取)

【代码】Dayjs获取最近的整点时间(往后取)

2023-05-05 19:17:48 1183 1

原创 Vue提示arsing error: No Babel config file detected for....

Vue提示缺少Babel配置,虽然不影响运行。但这种红色的标注看着总不舒服。

2023-02-23 15:29:00 828

原创 KMP算法,next表的创建。

更直观的如下图,其实就是看字符串这两块相同的部分(因为字符串本身是相同的,所以就是看p(k)最大前后缀长度),很明显,有相同的则不用重复比较。这里就是’aba’的最大前后缀’a’,数目为1,其实就是next[k]的值1。索引3前面的字符串为’aba’,最大相同前后缀数目为1,所以next[3]=1,也就是next[ p(k) ]=1。若此时p[j] = p[k],很明显,最大相同前后缀长度继续+1, next[j++]=k++ = 4。我们可以不用对比索引0的’a’,而可以直接从索引2的’b’开始对比。

2022-11-14 21:37:50 609

原创 使用飞桨paddlenlp的Taskflow API报错 RuntimeError: C:\Users\*** mkdir failed!

在github提出issues后,开发者很友好的帮助解决了这个问题。

2022-11-09 11:46:28 1631 4

原创 PyTorch geometric(torch_geometric)简单安装教程

一种较为简单的方法安装PYG,记录备用。

2022-10-08 13:39:37 1859

原创 Latex 的正文文献引用(作者,年)形式

这里使用Elsevier’s CAS LaTeX Double-Column模板,model5-names参考文献样式。部分期刊投稿需要参考文献APA格式,并且正文引用需要(作者,年)形式。,那么正文文献引用会是——作者,(年) 这种形式。设置到现在,参考文献正确了。但如果正文的文献使用的是。......

2022-08-27 10:43:20 7296 2

原创 CaEGCN: Cross-Attention Fusion based Enhanced Graph Convolutional Network for Clustering 2021

本文提出了一种基于交叉注意的深度聚类框架——基于交叉注意融合的增强型图形卷积网络(CaEGCN),该网络包含四个主要模块交叉注意融合模块,创新性地将与个体数据相关的内容自编码模块(CAE)和与逐层数据之间关系相关的图形卷积自编码模块(GAE)连接起来;交叉注意融合模块融合了两种异构表示,CAE模块补充了GAE模块的内容信息,避免了GCN的过度平滑问题。在GAE模块中,提出了两种新的损失函数,分别重建数据的内容和数据之间的关系。基于GCN的自编码器模块,用于利用数据之间的关系;...

2022-07-27 15:27:47 1305

原创 (SDCN)Structural Deep Clustering Network 2020 WWW

问题:当前的深度聚类方法的优势只要是从数据本身中提取有用的表示,而不重视数据的结构信息。本文结合GCN在图结构编码方面的优势,将结构化信息集成到深层聚类中,提出了一种结构化深层聚类网络(SDCN)。具体来说,提出的 SDCN 算法结合了自动编码器和 GCN 算法的优点,采用了一种新颖的传递算子和双重自监督模块。这是第一次将结构化信息明确地应用到深度聚类中。设计了一个传递算子,将自动编码器学习到的表示转移到相应的 GCN 层,并设计了一个双重自监督机制,将这两种不同的深层神经结构统一起来,引导整个模型的更新。

2022-06-15 16:49:16 4157

原创 DNC: A deep neural network-based clustering-oriented network embedding algorithm 2021

问题:当前的网络嵌入方法通常与具体任务分离。为了有效地解决这一问题,本文提出了一种基于深层神经网络的面向聚类的非属性网络数据节点嵌入方法——深层节点聚类(DNC)。首先提出了一种采用随机漫游模型直接获取图形结构信息的预处理方法。随后,我们提出学习一个深层的聚类网络,它可以联合学习节点嵌入和集群分配。Capturing the structural information:为了获取网络的结构信息,借用了现有工作 DNGR 中计算 PPMI 矩阵的方法。D为对角矩阵,T为转移矩阵(对A做归一化)。然后,在

2022-06-15 16:41:38 578

原创 (CDMEC)Stacked autoencoder-based community detection method via an ensemble clustering framework

本文提出了一种基于集成聚类的堆叠式自动编码社区检测方法(CDMEC)。这是第一次尝试应用四种不同的复杂网络相似性表示来解决群体检测问题。该方法弥补了单一相似度矩阵描述节点间相似关系的不足。这些相似性描述可以充分地描述和考虑网络拓扑节点之间充分的局部信息。CDMEC 框架结合了迁移学习和堆叠式自动编码器,通过一个新的集成聚类框架获得了一个高效的复杂网络的低维特征表示和聚集多个输入。该框架首先利用基本的聚类结果构造一致性矩阵,然后利用基于非负矩阵分解的聚类方法从一致性矩阵中检测可靠的聚类结果。本文的三个

2022-05-31 08:36:20 443

原创 (DANE)Deep Attributed Network Embedding 2018 IJCAI

问题:以前的网络嵌入通常只考虑了网络的拓扑结构,没有考虑丰富的属性信息。本文提出了一种新的深度属性网络嵌入方法,该方法能够捕捉网络的高度非线性,同时保持网络拓扑结构和节点属性的各种邻近性。同时,提出了一种保证学习节点表示能够对拓扑结构和节点属性的一致性和互补性信息进行编码的策略。定义1:一阶邻近表示两点之间存在连接则是相似的,否则不相似。定义二:高阶邻近可通过邻接矩阵归一化得到的转移矩阵进一步得到。表示了高阶相似性。如果两个节点共享了很多邻居,则他们是相似的。可以看做全局邻近度。定义三:语义邻

2022-05-20 09:44:31 664

原创 VGRAPH: A GENERATIVE MODEL FOR JOINT COMMUNITY DETECTION AND NODE REPRESENTATION LEARNING 2019

社区检测和节点表示学习,它们分别捕获图的全局结构和局部结构。在目前的文献中,这两个任务通常是独立研究,而实际上它们是高度相关的。本文提出了一种称为 vGraph 的概率生成模型,用于协作地学习社区成员和节点表示。该方法假设每个节点可以属于代表不同社会环境的多个社区,每个节点应该在不同的社会环境下生成不同的社区,有着不同的邻居。节点代表和社区发现互相受益。vGraph:本文为每个节点 w 引入先验分布 p (z | w) ,为每个社区 z 引入节点分布 p (c | z)。每条边(w,c)的生成过程可

2022-04-28 16:14:30 504

原创 CommDGI: Community detection oriented deep graph infomax 2020 CIKM

目录CommDGI: Community detection oriented deep graph infomaxGraph Infomax LayerTrainable Clustering Layer and Community-oriented ObjectivesDisentangled LearningJoint OptimizationDEEP GRAPH INFOMAX 2019 ICLRCommDGI: Community detection oriented deep graph in

2022-04-19 12:52:44 5369 3

原创 (NOCD)Overlapping Community Detection with Graph Neural Networks

论文地址代码地址本文提出了一种基于图神经网络的重叠社区检测模型。Neural Overlapping Community Detection(NOCD) model.可以看做BigCLAM的升级版。核心思想:将GNN的强大能力与伯努利-泊松概率(Bernoulli–Poisson)模型结合起来。Bernoulli–Poisson modelBernoulli-Poisson (BP)模型是一种考虑到重叠社区的图生成模型。根据BP模型,图是如下方式生成的:给定从属关系F∈R≥0N×CF \in

2022-04-11 16:27:28 5463 18

原创 社区发现算法——Walktrap算法

论文出处:Computing Communities in Large Networks Using Random Walks本文有以下贡献:新的基于随机行走的算法称为Walktrap,它计算给定图的社区结构。它在最坏情况下的复杂度是O(mn2)时间和O(n2)空间,而在大多数情况下是O(n2log n)时间和O(n2)空间基于随机游动的顶点之间(和社区之间)相似性的新度量®。 与之前的方法相比,该距离度量方法计算效率高,能够很好地捕捉社区结构的信息。新的度量(η)来评估一个图划分成社区的质量。这

2022-04-07 08:41:53 4817 5

原创 社区发现算法——(Spectral Clustering)谱聚类算法

归一化的拉普拉斯(The unnormalized graph Laplacian):L=D−WL = D - WL=D−W其中D为对角度矩阵,W为权重邻接矩阵。1.矩阵L满足以下性质:对于任一向量f∈Rnf \in \mathbb{R}^nf∈Rn, 有f′Lf=12∑i,j=1nwij(fi−fj)2f'Lf = \frac{1}{2}\sum\limits_{i,j=1}^n w_{ij}(f_i - f_j)^2f′Lf=21​i,j=1∑n​wij​(fi​−fj​)2.L是对称

2022-04-07 08:33:46 3812 1

原创 (AGC)Attributed Graph Clustering via Adaptive Graph Convolution

本文提出了一种自适应图卷积方法(AGC),该方法利用高阶图卷积来捕获全局的社区结构,并自适应地为不同的图选择合适的顺序。AGC是从图信号处理谱图理论的角度来理解GNN并增强了聚类效果AGC可以自适应的选择高阶信息的阶数AGC包括两个步骤:进行k阶图卷积,获得平滑的特征表示;对学习到的特征进行谱聚类,对节点进行聚类。AGC可以很容易地使用高阶图卷积来捕获全局社区结构,并可以为不同的图选择合适的k值。图卷积:图信号可以被表示为向量f=[f(v1),...,f(vn)]f = [f(v_1

2022-03-30 14:42:27 1846

原创 (深度学习社区发现综述)A Comprehensive Survey on Community Detection with Deep Learning

论文地址本文提出了一种新的分类框架,包括基于深度神经网络、深度非负矩阵分解和深度稀疏滤波的深度学习模型,并进一步将深度神经网络模型细分为卷积网络,图注意网络,生成对抗网络和自编码器。对于一些小型的网络和简单的场景,研究人员已经提出了一系列基于谱聚类、统计推断等传统技术的社区发现方法。然而,由于计算及存储空间成本巨大,这类方法并没有扩展到大型网络或具有高维特征的网络上。在现实世界的网络中,大量的非线性结构信息使传统的模型并不能够很好地应用于实际场景。因此,我们需要发展出具有良好计算性能的更强大的技术。如今

2022-03-27 14:28:38 5334

原创 (OSLOM)Finding statistically significant communities in networks

目录Statistical significance of clustersSingle cluster analysisNetwork analysisOSLOM论文地址作者提出OSLOM (Order Statistics Local Optimization Method),是第一种能够检测出包括有向、有权、重叠社区、层次结构和动态社区的网络中的社区的方法。该方法基于适应度函数的局部优化,该适应度函数表示社区相对于随机波动的统计意义,该适应度函数使用极值和order(顺序)统计工具估计的。是第一种

2022-03-27 14:09:18 1446

原创 (Leiden)From Louvain to Leiden:guaranteeing well-connected communities

Leiden算法论文地址Leiden算法是近几年的SOTA算法之一。Louvain 算法有一个主要的缺陷:可能会产生任意的连接性不好的社区(甚至不连通)。为了解决这个问题,作者引入了Leiden算法。证明了该算法产生的社区保证是连通的。此外证明了当Leiden算法迭代应用时,它收敛于一个划分,其中所有社区的所有子集都是局部最优分配的。并且算法速度比Louvain算法更快。通常社区划分的网络结构是未知的,所以我们选择模块度来评价社区发现结果。m总边数 ec社区c内的边数 kc社区c节点的

2022-03-18 15:17:26 14138 3

原创 社区发现算法——BigCLAM 算法

《Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach》BIGCLAM(Cluster Affiliation Model for Big Networks,大型网络的聚类关系模型)是一个bipartite affiliation network模型。BigCLAM方法流程:第一步:定义一个基于节点-社区隶属关系生成图的模型(community affiliation graph mo

2022-02-24 17:37:46 4853

原创 社区发现算法——SCAN算法

论文地址该算法用于检测网络中的社区、桥节点和离群点。它基于结构相似性度量对顶点进行聚类。该算法特点是:速度快,效率高,每个顶点只访问一次。主要贡献是能够识别出桥节点和离群点两种特殊点。前面提到的大多数方法倾向于社区网络,这样每个社区中都有一组密集的边,而社区之间的边很少。基于模块的和归一化切割算法是典型的例子。然而,这些算法并不区分网络中顶点的角色。有些顶点是集群的成员;有些顶点是桥接许多集群但不属于任何集群的桥节点,而有些顶点则是只与特定集群有弱关联的离群点。现有的方法,如基于模块的算法,会将

2022-02-24 17:28:14 5734 1

转载 社区发现算法——InfoMap算法

InfoMap算法详细原文地址了解InfoMap算法之前,需要先了解最小熵原理最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。H(P)=−∑i=1npilog2piH(P) = -\sum_{i=1}^{n}p_ilog_2p_iH(P)=−i=1∑n​pi​log2​pi​编码的最短平均长度就是信息熵,这其实也是无损压缩的能力极限,我们通过寻找更佳的方案去逼

2022-02-17 17:47:28 6569 3

原创 社区发现算法——LFM算法

LFM算法LFM算法是来源于论文《Detecting the overlapping and hieerarchical community structure in complex networks》原文的abstract对算法做了个大概的总结:Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based

2022-02-17 17:31:44 3088 11

原创 社区发现算法——Louvain 算法

Louvain 算法原始论文为:《Fast unfolding of communities in large networks》。所以又被称为Fast unfolding算法。Louvain算法是一种基于模块度的社区发现算法。其基本思想是网络中节点尝试遍历所有邻居的社区标签,并选择最大化模块度增量的社区标签。在最大化模块度之后,每个社区看成一个新的节点,重复直到模块度不再增大。首先复习下模块度:这里引入了权重方便扩展到有权图,但其实对于无权图,可以看做所有边权重为1,这时候就等于用节点的度计算

2022-02-08 16:34:29 49051 88

原创 社区发现算法——COPRA算法

COPRA算法LPA 算法简单直观 ,易于理解。而且求解准确性很高(指的是运气好的时候,毕竟随机性太大了hh)无需指定社区个数等其他任何参数.最主要是算法时间复杂度很低.接近线性但是 LPA 算法存在两个问题 :第一,其稳定性较差,原因是社区间标签易传播 ,当一个节点存在多个可选标签时.随机地选择其中一个 . 对于不同的随机选择会产生不同的社区发现结果第二 ,在现实生活中,很多节点可能同时属于多个标签 .而 LPA 算法是无法挖掘出重叠社区结构的.对此,基于LPA算法,引入了新的标签结构(c,b

2022-02-08 16:04:11 3881 6

原创 社区发现算法——LPA与SLPA算法

LPA(Label Propagation Algorithm)LPA算法是2002年由zhu等提出的,在2007年被Usha、Nandini、Raghavan应用到了社区发现领域,提出了RAK算法。但是大部分研究者称RAK算法为LPA算法。LPA是一种基于标签传播的局部社区划分。对于网络中的每一个节点,在初始阶段,Label Propagation算法对于每一个节点都会初始化一个唯一的一个标签。每一次迭代都会根据与自己相连的节点所属的标签改变自己的标签,更改的原则是选择与其相连的节点中所属标签最多的社

2022-02-04 17:00:00 6582 11

原创 社区发现算法———CPM算法

派系过滤CPM方法(clique percolation method)注意:(1)派系过滤CPM方法(clique percolation method)用于发现重叠社区,派系(clique)是任意两点都相连的顶点的集合,即完全子图。​ 在社区内部节点之间连接密切,边密度高,容易形成派系(clique)。因此,社区内部的边有较大可能形成大的完全子图,而社区之间的边却几乎不可能形成较大的完全子图,从而可以通过找出网络中的派系来发现社区。(2)k-派系表示网络中含有k个节点的完全子图,如果一个k-派

2022-02-04 10:46:51 5018 5

原创 社区发现算法——GN算法与FN算法

GN算法本算法的具体内容请参考Finding and evaluating community structure in networks(Newman and Girvan)。重要概念边介数(betweenness):网络中任意两个节点通过此边的最短路径的数目。GN算法的思想:在一个网络之中,通过社区内部的边的最短路径相对较少,而通过社区之间的边的最短路径的数目则相对较多。GN算法是一个基于删除边的算法,本质是基于聚类中的分裂思想,在原理上是使用边介数作为相似度的度量方法。在GN算法中,每次都会

2022-02-04 10:34:00 10320 19

原创 社区发现算法——KL算法

K-L(Kernighan-Lin)算法原始论文(An efficient heuristic procedure for partitioning graphs)K-L(Kernighan-Lin)算法是一种将已知网络划分为已知大小的两个社区的二分方法,它是一种贪婪算法。它的主要思想是为网络划分定义了一个函数增益Q。Q表示的是社区内部的边数与社区之间的边数之差。根据这个方法找出使增益函数Q的值成为最大值的划分社区的方法。具体策略是,将社区结构中的结点移动到其他的社区结构中或者交换不同社区结构中

2022-02-04 10:24:52 5783 1

原创 社区发现基础

社区发现社区网络基本知识由数量巨大的节点和节点之间具有错综复杂连接关系的边所构成的大型网络统称为复杂网络。节点代表实体,边代表实体之间的关系。复杂网络的性质复杂网络中存在的共同性质包括小世界特性、无标度特性、高聚集特性和社区结构。小世界性是指复杂网络具有短路径长度和大的聚类系数的特点,平均路径长度值较小,通常其数量级不超过 10。(如六度分割理论)无标度性是指复杂网络中节点的度分布服从幂率分布。(说明不是一个随机网络,因为随机网络应该服从的是泊松分布)无标度网络中有大量度比较小的节点,而随机网络

2022-01-21 16:04:06 3356

原创 Community detection in networks: A user guide

Community detection in networks: A user guide该文是一片关于社区检测的综述性文章,方便大家社区检测方向的入门。社区或集群通常被看做是一组顶点,它们之间相互连接的概率比与其他组的成员连接的概率高。但是确定社区仍然是一个定义不清的问题。在基本要素(如社区本身的定义)上没有通用协议,在其他关键问题(如算法验证和性能比较)上也没有通用协议。这产生了一些混淆和误解,损害了该领域的进展。本文包括六个部分,其中三、四部分为重点。第二节论述了社区的概念,描述了从经典的基于子

2022-01-14 10:59:29 913

原创 图论总复习

《图论及其应用》主要考试知识点:第2章,第 3章,第5 章,第 6章,章节占比:20%,25%,30%,25%。**第2章:**图的定义、度的概念、握手定理、可图画、同构、子图、二部图及其判断、极大路径法、图的矩阵表示等、图的连通性等基本概念;欧拉图的概念 和判定定理,汉密尔顿图的概念和若干充分条件、必要条件;**第3章:**树的概念和树的性质,生成树和生成树的计数,最小生成树;有向树、根树,最优二元树及最佳前缀码;最短路算法(如Dijkstra算法);**第5章:**独立集、支配集、独立数、支配

2022-01-12 15:14:53 10135

原创 A Neural Probabilistic Language Model论文阅读记录

A Neural Probabilistic Language Model这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖。Abstract统计语言建模的一个目标是学习语言中单词序列的联合概率函数。遇到的困难包括 curse of dimensionality维数灾难:用于测试模型的单词序列很可能与训练中看到的所有单词序列不同. 传统方法n-gram提高泛化性。本文提出学习单词的分布式表达来接维数问题,这种方法允许每一个训练语句给模型提供关于语义相邻句子的指数级别数量的信息。他的

2021-12-21 13:32:47 659

原创 报错:运行含有********的单元需要安装或更新ipykernel

报错:运行含有********的单元需要安装或更新ipykernel今天运行用VScode运行jupyter发现报错:运行含有’Python 3.7.12 64-bit (‘torch37’: conda)'的单元需要安装或更新ipykernel。而直接打卡控制台发现内核总是繁忙中,并且命令行报错Bad file descriptor (D:\bld\zeromq_1629967000004\work\src\epoll.cpp:100)经过查阅发现是pyzmq模块版本错误输入以下两条命令成功解决

2021-11-08 16:24:25 8318

原创 Oracle linux7.9安装 Oracle 19c

Oracle linux7.9安装 Oracle 19c整体步骤首先安装VMware Workstation 16 Pro虚拟机软件,然后安装Oracle linux系统,再安装Oracle 19c数据库。VMware Workstation 16 Prohttps://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.htmlOracle linux (本文选择下载7.9版本)https://yum.o

2021-11-04 18:40:31 7115 3

原创 机器学习学习过程记录

机器学习学习过程记录1# np.meshgrid 生成网格点坐标矩阵。 把平面图变成一张‘网图’ 方便后面整体上色# np.arange() 函数返回一个有终点和起点的固定步长的排列xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))生成一个平面网络 方便后面上色# plt.pcolormesh(xx, yy, Z, cmap=plt.cm.P

2021-09-28 12:50:06 803

原创 setInterval方法抽离后传参后只执行一次

setInterval方法抽离后传参后只执行一次 setInterval(hello('nihao'), 30); function hello(word) { console.log(word) }如果像上面一样传递参数 调试发现只执行了一次这是因为 hello(‘nihao’)相当于函数调用了一次 不是回调函数的正确写法查阅后我们可以看到declare function setInterval(handler: Ti

2021-09-22 19:27:43 278

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除