51Nod - 1503 多线程dp + 背包思想优化

题意:

一只猪走进了一个森林。很凑巧的是,这个森林的形状是长方形的,有n行,m列组成。我们把这个长方形的行从上到下标记为1到n,列从左到右标记为1到m。处于第r行第c列的格子用(r,c)表示。

刚开始的时候猪站在(1,1),他的目标是走到(n,m)。由于猪回家心切,他在(r,c)的时候,只会往(r+1,c)或(r,c+1)走。他不能走出这个森林。

这只猪所在的森林是一个非同寻常的森林。有一些格子看起来非常相似,而有一些相差非常巨大。猪在行走的过程中喜欢拍下他经过的每一个格子的照片。一条路径被认为是漂亮的当且仅当拍下来的照片序列顺着看和反着看是一样的。也就是说,猪经过的路径要构成一个回文。

数一数从(1,1)到(n,m)有多少条漂亮路径。答案可能非常巨大,请输出对  109+7  取余后的结果。

样例解释:有三种可能

  


Input
单组测试数据。
第一行有两个整数 n,m (1≤n,m≤500),表示森林的长和宽。
接下来有n行,每行有m个小写字母,表示每一个格子的类型。同一种类型用同一个字母表示,不同的类型用不同的字母表示。
Output
输出答案占一行。
Input示例
3 4
aaab
baaa
abba
Output示例
3

思路:

对于这种回文串dp,如果单从左上到右下考虑,显然它不满足最优子结构的,所以这里需要从路径两头向中间考虑,两个指针每次走的都是相同的节点,这样相遇的时候一定是回文串,这种同时考虑多个方向的dp就是多线程dp,听起来唬人,其实归根结底还是个dp。
假设两个指针分别是p1:(x1,y1)和p2:(x2,y2),设p1是从(1,1)往右下角走,p2是从(n,m)往左上角走,因为最终回文串的长度一定是n+m-1,所以两个指针各走(n+m)/2步就能相遇。这里两个指针看起来有坐标有四个数,其实如果知道当前走的步数,另外只需要知道x1和x2即可,y1和y2是可以通过x1和x2算出来的。
设dp[k][x1][x2]表示当前步数为k,且p1和p2的横坐标为x1和x2的情况下能组成回文串的方案数,很显然dp[k][x1][x2]要是大于0,必定要保证str[x1][y1]和str[x2][y2]相同。然后p1从(x1-1,y1)和(x1,y1-1)转移过来,p2从(x2+1,y2)和(x2,y2+1)转移过来,这样理清思路后,代码就不难写了。
但是这题坑点在于n和m给的有点大,如果按照思路中开三维保存dp[500][500][500]会MLE,这样就需要空间上的优化,这里回想一下01背包的优化思想,把步数这一维去掉,只保存两个指针的横坐标,在转移的过程中,就需要逆向循环,x1要从k到1,x2要从n-k+1到n,这样做的原因是要保证在第k层,计算dp[x1][x2]的时候,转移来源dp[x1-1][x2+1],dp[x1-1][x2],dp[x1][x2+1]还保存着k-1层的结果。
具体细节看代码。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 505;
const ll MOD = 1e9 + 7;

char str[MAXN][MAXN];
ll dp[MAXN][MAXN];

const int dx[] = {0, 1};
const int dy[] = {1, 0};

int main() {
	int n, m;
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) {
		scanf("%s", str[i] + 1);
	}
	int len = (n + m) / 2;
	if (str[1][1] != str[n][m]) {
		puts("0");
		return 0;
	}
	dp[1][n] = 1;
	for (int k = 2; k <= len; k++) {
		for (int i = k; i >= 1; i--) {
			int x1 = i, y1 = k + 1 - x1;
			if (x1 < 1 || x1 > n || y1 < 1 || y1 > m) continue;
			for (int j = n - k + 1; j <= n; j++) {
				int x2 = j, y2 = n + m - k + 1 - x2;
				if (x2 < 1 || x2 > n || y2 < 1 || y2 > m) continue;
				if (str[x1][y1] != str[x2][y2]) {dp[x1][x2] = 0; continue;}
				dp[x1][x2] = (dp[x1][x2] + dp[x1 - 1][x2 + 1]) % MOD;		// 这三个计算之前判断一下坐标边界更好,不过结果应该也不影响
				dp[x1][x2] = (dp[x1][x2] + dp[x1 - 1][x2]) % MOD;
				dp[x1][x2] = (dp[x1][x2] + dp[x1][x2 + 1]) % MOD;
				// printf("len : %d  (%d, %d) (%d, %d) %lld\n", k, x1, y1, x2, y2, dp[x1][x2]);
				// printf("(%d, %d) (%d, %d) %lld\n", x1 - 1, y1, x2 + 1, y2, dp[x1 - 1][x2 + 1]);
				// printf("(%d, %d) (%d, %d) %lld\n", x1 - 1, y1, x2, y2 + 1, dp[x1 - 1][x2]);
				// printf("(%d, %d) (%d, %d) %lld\n", x1, y1 - 1, x2 + 1, y2, dp[x1][x2 + 1]);
			}
		}
	}
	ll ans = 0;
	if ((n + m) % 2 == 0) {
		for (int x1 = 1; x1 <= n; x1++) {
			int y1 = len + 1 - x1;
			if (x1 < 0 || x1 > n || y1 < 0 || y1 > m) continue;
			ans = (ans + dp[x1][x1]) % MOD;
	 	}
	 }
	 else {
	 	for (int x1 = 1; x1 <= n; x1++) {
	 		int y1 = len + 1 - x1;
			if (x1 < 0 || x1 > n || y1 < 0 || y1 > m) continue;
			for (int i = 0; i < 2; i++) {
				int x2 = x1 + dx[i], y2 = y1 + dy[i];
				if (x2 < 0 || x2 > n || y2 < 0 || y2 > m) continue;
				ans = (ans + dp[x1][x2]) % MOD;  
			}
	 	}
	 }
	 printf("%lld\n", ans);
	 return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值