安装caffe步骤:Ubuntu的安装自行百度。
下载准备:
1. 下载NVIDIA驱动:驱动安装包的大小大约100M。
2. 下载CUDA 8.0(toolkit):
3. 下载cudnnV5.1:我们只下载cudnn v5.1 library for linux
4.下载openCV3.0
现在安装NVIDIA显卡驱动:(以下操作均在ubuntu里进行)
安装 GTX1070 显卡驱动及 CUDA8.0 :
步骤:
( 1 )进入 Ubuntu 界面
( 2 )插入 U 盘,将内容拷贝至 Desktop 文件下。熟悉 Ubuntu 的同学,这步可以按照自己习惯放置在其他文件夹下。
( 3 )如图搜索 Terminal
(4) 将命令框图标拖动到左边栏里或者桌面,以便使用。
(5) 打开命令框,首先更改密码:sudo passwd //养成习惯,需要权限的时候才使用sudo指令)
输入 sudo vi /etc/default/grub
(6) 此时系统会进入一个文本页面。在前面可以看到现 GRUB_CMDLINE_LINUX_DEFAULT="quietsplash" 。 将光标移动到这个命令最前端,然后键盘点击 Esc 键 , 再点击 y 键两次 , 点一下 p 键 。 就会将本条指令复制一个放到下一行。然后点击 i 键,就能进行编辑了,在本行命令前面添加 # 号,然后移动到复制出来的那条,修改 quiet splash为 text, 按 Esc 键 。 Shift+ : 输入 wq 。
此时会调回命令框界面,输入 sudo update-grub
输入 shut down – r now 重启或者reboot
(7) 重启后进入字符界面,按照提示输入你的 用户名 及 密码
需要权限root的时候直接使用sudo //输入 sudo -I 输入密码
输入 cd /home/ ***( 这个按 Tab 键自动匹配 ) /Desktop //找到自己放在ubuntu的下载文件
先把驱动的权限设置好:chmod +x(x表示有执行的权限)
输入(执行) ./NVIDIA-LIN … ( 这个按 Tab 键自动匹配 ) 或 /bin/bash 文件名
不懂的看图如下
按回车键后出现
…………………………………………………………………………………………………………………………………………………………………………………………………………………………….
说明开始安装
然后选择 Accept 等等同意字样
期间遇到协议的时候一直按 空格键 就行
协议完成后提示如图
输入 accept
然后一路同意就行
(7) 安装 NVIDIA 结束后,同样操作安装 CUDA8.0 ,这里需要注意其中一个地方需要填写 N 才行,不能写 Y 。因为不需要再安装一次显卡的驱动,如图
其余操作如图
然后回车等待就行
(8) 类似刚刚第( 5 )步的执行
输入 sudo vi /etc/default/grub 此时系统会进入一个文本页面。在出现GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" 。 在本行命令前面 删除# 号,
然后移动到复制出来的那条,命令前面 添加 # 号,按 Esc 键 。 Shift + : 输入 wq 。
此时会调回命令框界面,输入 sudo update-grub
输入 shutdown – r now 重启
(9)回到图形界面
加入环境变量
sudo vim ~/.bashrc
在最后加入
Export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
Export PATH=/usr/local/cuda-8.0/bin:$PATH
Export PYTHONPATH=/usr/lib/python2.7:$PYTHONPATH
推出后
source ~/.bashrc
Cudnn 安装
cd /home/***( 自己的用户名 )/Desktop/###( 这个命令意思是找到刚刚我们用 U 盘传过来的文件 )
tar xvzf cudnn- 8.0 -linux-x64-v5.1-ga.tgz ### (解压这个文件)
sudo cp cuda/include/cudnn.h /usr/local/cuda/include ### (复制)
sudo cp cuda/lib64/libcudnn * /usr/local/cuda/lib64 ### (复制)
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn *
加环境变量:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
export PATH="$CUDA_HOME/bin:$PATH"
sudo ldconfig
而lib文件夹是在系统路径里的,因此用下述命令先删除软连接
cd /usr/local/cuda/lib64/
用ls -al发现是文件权限的问题
ls -al //查看链接全部链接上没有,如果没有,自己链接,实例如下
因此用下述命令先删除软连接
sudo rm -rf libcudnn.so libcudnn.so.6.5 //(删除中间的链接)
然后修改文件权限,并创建新的软连接
sudo chmod u=rwx,g=rx,o=rx libcudnn.so.6.5.18
sudoln -s libcudnn.so.6.5.18 libcudnn.so.6.5
sudoln -s libcudnn.so.6.5 libcudnn.so
以上安装完成,就可以安装起caffe:
安装依赖项
更新源
sudoapt-get update
参考官网页面地址:http://caffe.berkeleyvision.org/install_apt.html
安装命令:
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-devlibhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
特别提示:ubuntu命令行里按住ctrl+shift+c是复制,ctrl+shift+v是粘贴
三、 相关安装
安装git命令:
sudo apt-get install git
安装BLAS命令:
sudo apt-get install libatlas-base-dev
安装pycaffe接口所需的依赖项:
sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython
安装其他依赖项目:
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
Caffe相关操作
下载caffe:
sudo gitclone https://github.com/BVLC/caffe.git
进入caffe:
cd caffe
sudo pip install -r /path/to/caffe/python/requirements.txt //path to 是你安装caffe的路径
配置Makefile.config文件:
sudo cpMakefile.config.example Makefile.config
修改Makefile.config:
sudo viMakefile.config
#USE_CUDNN := 1 前面的#删掉变为
USE_CUDNN:= 1
#WITH_PYTHON_LAYER:=1
WITH_PYTHON_LAYER:=1
编译caffe:
依次执行如下命令
sudo make all -j16 (16是cpu的线程数)
sudo make test -j16
sudo make runtest -j16
编译Python用到的caffe文件
编译caffe:
执行如下命令
sudo make pycaffe -j16
六、 验证
cd python
python
import caffe
不报错就表明安装成功了!
加入caffe的环境变量:(在外部python可以import caffe)
Sudo vim~/ .bashrc
export PYTHONPATH=/home/li/caffe/python:$ PYTHONPATH
# export PYTHONPATH=/home/li/caffe/python/caffe:$ PYTHONPATH
source ~/.bashrc
七、基于caffe的手写数字识别
caffe MNIST by 小蔡
官方github地址:
https://github.com/BVLC/caffe
cd /caffe/caffe
1.下载数据
./data/mnist/get_mnist.sh
2.转化为lmdb格式
./examples/mnist/create_mnist.sh
3.训练数据
./examples/mnist/train_lenet.sh
其中的问题总结
libcudnn.so.6.5:cannotopen sharedobject file: No such file or directory :
解决办法:http://blog.csdn.net/u011534057/article/details/51115010
opencv3.0还不支持cuda8.0,但是有个同学已经对其进行修改:
解决办法https://github.com/opencv/opencv/pull/6510/commits/10896129b39655e19e4e7c529153cb5c2191a1db
编译make cuda sample
详看:http://www.cnblogs.com/platero/p/3993877.html
ImportError:libcudnn.so.5: cannot open shared object file: No such file or directory
libcudart.so.7.5:cannot open shared object file:64-bit:
解决办法:sudo ldconfig/usr/local/cuda/lib64
errorwhile loading shared libraries: libcudart.so.3:
解决方案:exportLD_LIBRARY_PATH=/usr/local/cuda/lib64
faster-rcnn:cudnnV4-V5
http://www.cnblogs.com/zjutzz/p/6099720.html
解决办法是依据出现错误的顺序而给出的,为了方便,可以直接先执行所有解决办法后再安装caffe。
1. ./include/caffe/common.hpp:5:27: fatal error: gflags/gflags.h: No such file or directory
解决办法:sudo apt-get install libgflags-dev
2. ./include/caffe/util/mkl_alternate.hpp:14:19: fatal error: cblas.h: No such file or directory
解决办法:sudo apt-get install libblas-dev
3. ./include/caffe/util/hdf5.hpp:6:18: fatal error: hdf5.h: No such file or directory
解决办法:在Makefile.config找到以下行并添加蓝色部分
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
4. ./include/caffe/util/db_lmdb.hpp:8:18: fatal error: lmdb.h: No such file or directory
解决办法:sudo apt install liblmdb-dev
5. /usr/bin/ld: cannot find -lcblas
/usr/bin/ld: cannot find -latlas
解决办法:sudo apt install libatlas-base-dev