caffe+ubuntu14.04+GTX1070+CUDA8.0+CUDNNv5.1

安装caffe步骤:Ubuntu的安装自行百度。

下载准备:

1.     下载NVIDIA驱动:驱动安装包的大小大约100M。



2.     下载CUDA 8.0(toolkit):


3.     下载cudnnV5.1:我们只下载cudnn v5.1 library for linux

 

4.下载openCV3.0

网址:http://opencv.org/

 

现在安装NVIDIA显卡驱动:(以下操作均在ubuntu里进行)

 

安装 GTX1070 显卡驱动及 CUDA8.0 

步骤:

 1 )进入 Ubuntu 界面

 2 )插入 U 盘,将内容拷贝至 Desktop 文件下。熟悉 Ubuntu 的同学,这步可以按照自己习惯放置在其他文件夹下。

 3 )如图搜索 Terminal


4 将命令框图标拖动到左边栏里或者桌面,以便使用。

5 打开命令框,首先更改密码:sudo passwd    //养成习惯,需要权限的时候才使用sudo指令)

输入 sudo vi /etc/default/grub


6 此时系统会进入一个文本页面。在前面可以看到现 GRUB_CMDLINE_LINUX_DEFAULT="quietsplash"  将光标移动到这个命令最前端,然后键盘点击 Esc   再点击 y 键两次  点一下 p   就会将本条指令复制一个放到下一行。然后点击 i 键,就能进行编辑了,在本行命令前面添加 # 号,然后移动到复制出来的那条,修改 quiet splash text  Esc   Shift+  输入 wq 


此时会调回命令框界面,输入 sudo update-grub

输入 shut down   – r  now 重启或者reboot

7 重启后进入字符界面,按照提示输入你的 用户名  密码

需要权限root的时候直接使用sudo     //输入 sudo  -I  输入密码

输入 cd  /home/ ***( 这个按 Tab 键自动匹配 ) /Desktop    //找到自己放在ubuntu的下载文件

先把驱动的权限设置好:chmod +xx表示有执行的权限

输入(执行) ./NVIDIA-LIN … ( 这个按 Tab 键自动匹配 )  /bin/bash 文件名

不懂的看图如下



按回车键后出现

…………………………………………………………………………………………………………………………………………………………………………………………………………………………….

说明开始安装

然后选择 Accept 等等同意字样

期间遇到协议的时候一直按 空格键 就行

协议完成后提示如图


输入 accept

然后一路同意就行

7 安装 NVIDIA 结束后,同样操作安装 CUDA8.0 ,这里需要注意其中一个地方需要填写 N 才行,不能写 Y 。因为不需要再安装一次显卡的驱动,如图

其余操作如图


然后回车等待就行

8 类似刚刚第( )步的执行

输入 sudo  vi  /etc/default/grub 此时系统会进入一个文本页面。在出现GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"  在本行命令前面 删除号,

然后移动到复制出来的那条,命令前面 添加 号,按 Esc   Shift  输入 wq 

此时会调回命令框界面,输入 sudo update-grub

输入 shutdown   – r now 重启

(9)回到图形界面

加入环境变量

sudo vim ~/.bashrc

在最后加入

Export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

Export PATH=/usr/local/cuda-8.0/bin:$PATH

Export PYTHONPATH=/usr/lib/python2.7:$PYTHONPATH

推出后

source ~/.bashrc 

 

Cudnn 安装

cd  /home/***( 自己的用户名 )/Desktop/###( 这个命令意思是找到刚刚我们用 U 盘传过来的文件 )

tar xvzf cudnn- 8.0 -linux-x64-v5.1-ga.tgz    ### (解压这个文件)

sudo cp cuda/include/cudnn.h  /usr/local/cuda/include   ### (复制)

sudo cp cuda/lib64/libcudnn *   /usr/local/cuda/lib64    ### (复制)

sudo   chmod a+r  /usr/local/cuda/include/cudnn.h  /usr/local/cuda/lib64/libcudnn *

加环境变量:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"

export CUDA_HOME=/usr/local/cuda

export PATH="$CUDA_HOME/bin:$PATH"  

sudo ldconfig


lib文件夹是在系统路径里的,因此用下述命令先删除软连接

cd /usr/local/cuda/lib64/

ls -al发现是文件权限的问题

ls -al                //查看链接全部链接上没有,如果没有,自己链接,实例如下

因此用下述命令先删除软连接

sudo rm -rf libcudnn.so libcudnn.so.6.5    //(删除中间的链接)

然后修改文件权限,并创建新的软连接

sudo chmod u=rwx,g=rx,o=rx libcudnn.so.6.5.18
sudoln -s libcudnn.so.6.5.18 libcudnn.so.6.5
sudoln -s libcudnn.so.6.5 libcudnn.so
 
以上安装完成,就可以安装起caffe

安装依赖项

  更新源

sudoapt-get update

参考官网页面地址:http://caffe.berkeleyvision.org/install_apt.html

安装命令:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-devlibhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

特别提示:ubuntu命令行里按住ctrl+shift+c是复制,ctrl+shift+v是粘贴

三、 相关安装

安装git命令:

sudo apt-get install git

安装BLAS命令:

sudo apt-get install libatlas-base-dev

安装pycaffe接口所需的依赖项:

sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython

安装其他依赖项目:

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

 

Caffe相关操作

下载caffe

sudo gitclone https://github.com/BVLC/caffe.git

进入caffe

cd caffe

sudo pip install -r /path/to/caffe/python/requirements.txt   //path to 是你安装caffe的路径

配置Makefile.config文件

sudo cpMakefile.config.example Makefile.config

修改Makefile.config

sudo viMakefile.config

#USE_CUDNN := 1   前面的#删掉变为

USE_CUDNN:= 1

#WITH_PYTHON_LAYER:=1

WITH_PYTHON_LAYER:=1

编译caffe

依次执行如下命令

sudo make all -j16    (16是cpu的线程数)

sudo make test -j16

sudo make runtest -j16

编译Python用到的caffe文件

编译caffe

执行如下命令

sudo make pycaffe -j16

六、 验证

cd python

python

import caffe

不报错就表明安装成功了!

加入caffe的环境变量:(在外部python可以import caffe)

Sudo vim~/ .bashrc

export PYTHONPATH=/home/li/caffe/python:$ PYTHONPATH

# export PYTHONPATH=/home/li/caffe/python/caffe:$ PYTHONPATH

source ~/.bashrc

七、基于caffe的手写数字识别

caffe MNIST by 小蔡
官方github地址:
https://github.com/BVLC/caffe
cd /caffe/caffe 
1.
下载数据
./data/mnist/get_mnist.sh 
2.
转化为lmdb格式
./examples/mnist/create_mnist.sh
3.训练数据
./examples/mnist/train_lenet.sh

 

其中的问题总结 

libcudnn.so.6.5:cannotopen sharedobject file: No such file or directory :

解决办法:http://blog.csdn.net/u011534057/article/details/51115010

opencv3.0还不支持cuda8.0,但是有个同学已经对其进行修改:

解决办法https://github.com/opencv/opencv/pull/6510/commits/10896129b39655e19e4e7c529153cb5c2191a1db

编译make cuda sample

详看:http://www.cnblogs.com/platero/p/3993877.html

ImportError:libcudnn.so.5: cannot open shared object file: No such file or directory

libcudart.so.7.5:cannot open shared object file:64-bit:

解决办法:sudo ldconfig/usr/local/cuda/lib64

errorwhile loading shared libraries: libcudart.so.3:

解决方案:exportLD_LIBRARY_PATH=/usr/local/cuda/lib64

faster-rcnn:cudnnV4-V5

http://www.cnblogs.com/zjutzz/p/6099720.html

解决办法是依据出现错误的顺序而给出的,为了方便,可以直接先执行所有解决办法后再安装caffe。

1. ./include/caffe/common.hpp:5:27: fatal error: gflags/gflags.h: No such file or directory

解决办法:sudo apt-get install libgflags-dev

2. ./include/caffe/util/mkl_alternate.hpp:14:19: fatal error: cblas.h: No such file or directory

解决办法:sudo apt-get install libblas-dev

3. ./include/caffe/util/hdf5.hpp:6:18: fatal error: hdf5.h: No such file or directory

解决办法:在Makefile.config找到以下行并添加蓝色部分

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial 

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

4. ./include/caffe/util/db_lmdb.hpp:8:18: fatal error: lmdb.h: No such file or directory

解决办法:sudo apt install liblmdb-dev

5. /usr/bin/ld: cannot find -lcblas

    /usr/bin/ld: cannot find -latlas

解决办法:sudo apt install libatlas-base-dev


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值