# 常用三角函数公式

331人阅读 评论(0)

sin(A+B)=sinAcosB+cosAsinB$\sin(A + B) = \sin A\cos B + \cos A\sin B$
sin(AB)=sinAcosBcosAsinB$\sin(A - B) = \sin A\cos B - \cos A\sin B$
cos(A+B)=cosAcosBsinAsinB$\cos(A + B) = \cos A\cos B - \sin A\sin B$
cos(AB)=cosAcosB+sinAsinB$\cos(A - B) = \cos A\cos B + \sin A\sin B$
tan(A+B)=tanA+tanB1tanAtanB$\tan(A + B) = \frac {\tan A + \tan B}{1 - \tan A\tan B}$
tan(AB)=tanAtanB1+tanAtanB$\tan(A - B) = \frac {\tan A - \tan B}{1 + \tan A\tan B}$

tan2A=2tanA1tan2A$\tan 2A = \frac {2\tan A}{1 - \tan^2 A}$
sin2A=2sinAcosA$\sin 2A = 2\sin A\cos A$
cos2A=cos2Asin2A=2cos2A1=12sin2A$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2A - 1 = 1 - 2\sin^2A$

sin3A=3sinA4sin3A$\sin 3A = 3\sin A - 4\sin^3 A$
cos3A=4cos3A3cosA$\cos 3A = 4\cos^3 A - 3\cos A$

sinA2=±1cosA2$\sin \frac A2 = \pm\sqrt {\frac {1 - \cos A}2}$
cosA2=±1+cosA2$\cos \frac A2 = \pm\sqrt {\frac {1 + \cos A}2}$
tanA2=±1cosA1+cosA=1cosAsinA=sinA1+cosA$\tan \frac A2 = \pm\sqrt {\frac {1 - \cos A}{1 + \cos A}} = \frac {1 - \cos A}{\sin A} = \frac {\sin A}{1 + \cos A}$

sinA+sinB=2sinA+B2cosAB2$\sin A + \sin B = 2\sin \frac {A + B}2\cos\frac {A - B}2$
sinAsinB=2cosA+B2sinAB2$\sin A - \sin B = 2\cos \frac {A + B}2\sin\frac{A - B}2$
cosA+cosB=2cosA+B2cosAB2$\cos A + \cos B = 2\cos\frac {A+B}2\cos\frac{A - B}2$
cosAcosB=2sinA+B2sinAB2$\cos A - \cos B = -2\sin\frac{A + B}2\sin\frac {A - B}{2}$
tanA+tanB=sin(A+B)cosAcosB$\tan A + \tan B = \frac {\sin(A + B)}{\cos A\cos B}$

sinAsinB=12[cos(A+B)cos(AB)]$\sin A\sin B = -\frac 12[\cos(A+B) - \cos(A-B)]$
cosAcosB=12[cos(A+B)+cos(AB)]$\cos A\cos B = \frac 12[\cos(A+B) + \cos(A-B)]$
sinAcosB=12[sin(A+B)+sin(AB)]$\sin A\cos B = \frac 12[\sin(A+B) + \sin(A-B)]$
cosAsinB=12[sin(A+B)sin(AB)]$\cos A\sin B = \frac 12[\sin(A+B) - \sin(A-B)]$

sina=2tana21+(tana2)2$\sin a = \frac {2\tan \frac a2}{1 + (\tan\frac a2)^2}$
cosa=1(tana2)21+(tana2)2$\cos a = \frac {1 - (\tan\frac a2)^2}{1 + (\tan\frac a2)^2}$
tana=2tana21(tana2)2$\tan a = \frac {2\tan \frac a2}{1 - (\tan\frac a2)^2}$

Asina+Bcosa=A2+B2sin(a+θ)$A\sin a + B\cos a = \sqrt {A ^ 2 + B ^ 2}sin(a + \theta)$ 其中 tanθ=BA$\tan\theta = \frac BA$

1±sina=(sina2±cosa2)2$1 \pm \sin a = (\sin \frac a2 \pm \cos \frac a2)^2$
sin2x+cos2x=1$\sin^2 x + \cos^2 x = 1$
tanx=sinxcosx$\tan x = \frac {\sin x}{\cos x}$
tanA+tanB+tanC=tanAtanBtanC$\tan A+\tan B+\tan C = \tan A\tan B\tan C$

asinA=bsinB=csinC=2R$\frac a{\sin A} = \frac b{\sin B} = \frac c{\sin C} = 2R$ (R 为三角形内切圆半径)

c2=a2+b22abcosC$c^2 = a^2 + b^2 - 2ab\cos C$

0
0

个人资料
• 访问：37596次
• 积分：1437
• 等级：
• 排名：千里之外
• 原创：110篇
• 转载：1篇
• 译文：0篇
• 评论：38条
友情链接