常用不等式与放缩

常用不等式

均值不等式

Hn<=Gn<=An<=Qn

其中:
调和平均数: Hn=nni=11xi
几何平均数: Gn=ni=1xin
算术平均数: An=ni=1xin
平方平均数: Qn=ni=1x2in

绝对值不等式

|a||b|<=|a±b|<=|a|+|b|

琴生不等式

凸函数:
f(x) 在区间 I 上有定义,如果对任意 x1,x2I 和实数 λ(0,1) 总有

f(λx1+(1λ)x2)<=λf(x1)+(1λ)f(x2)
成立,则称 f(x) 在区间 I 上为下凸函数
变形:
f(x1)f(x2)f(xn)>=f(x1+x2++xnn)

琴生不等式:
若 f 为 [a,b] 上的凸函数,则对任意 xi[a,b],λi>0,ni=1λi=1 ,有

f(i=1nλixi)<=i=1nλif(xi)

伯努利不等式

对实数 x>1
n>=1 ,有 (1+x)n>=1+nx
0<=n<=1 ,有 (1+x)n<=1+nx
当且仅当 n=0,1 x=0 时等号成立
一般式:

(1+x1+x2+x3++xn)<=(1+x1)(1+x2)(1+x3)(1+xn)

柯西不等式

i=1na2ii=1nb2i>=(i=1naibi)2

|a||b|>=|a ˙b|

排序不等式

若数列 {an}{bn} 满足单调不下降,则有:顺序和 >= 乱序和 >= 逆序和

切比雪夫不等式

若有 a1>=a2>=>=an,b1>=b2>=>=bn

ni=1n(aibi)>=(i=1nai)(i=1nbi)>=ni=1n(aibni+1)


放缩

  1. 1n2<1n214=2(12n112n+1)
  2. 1n2<1n(n1)=1n11n
  3. lnx<=x1lnxx<=11x
  4. 1k>2k+k+12(k+1k)
  5. 1n+2<n+2n
  6. 2(n+1n)<1n<2(nn1)

ex1. a>1, nN ,n>1,求证 an1<a1n
x=an1 ,则 (x+1)n=a
即证 nx<(x+1)n1
(x+1)n1=C0nxn++Cn1nx+11>Cn1nx=nx

ex2. 求证 ln223+ln333++lnnn3<1e
(lnxx)=1lnxx2
x=e(lnxx)max=1e
ni=2lnii3<ni=21ei2<1eni=21(i1)i<1e

ex3.
利用 (n1)(n+1)<=n2
135(2n1)246(2n)=123252(2n1)2(2n+1)224262(2n)2(2n+1)<12n+1

ex4. 证明 nk=112k1
n>=2 时, (2n1)32n2=2n21
于是 12n1<=1312n2
nk=112k1<1+13n2k=02k<53

数学归纳也是滋磁的

  • 22
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值