斯坦福公开课Machine Learning笔记(二)--Classification and Logistic Regression

斯坦福公开课Machine Learning笔记(二)–Classification and Logistic Regression

这系列笔记其实已经手写好, 现在一次性发上来, 主要是怕丢. 内容以Andrew Ng的讲义为主,主要以公式推导与理解为主,引入和介绍省略.对于最后的Reinforcement Learning部分, 由于没有讲义以及对其实在不熟悉, 就没有笔记了(主要还是因为没有讲义).

1. Logistic Regression

线性回归比较适合预测的问题,对于分类问题,Logistic Regression用的就非常广泛了.

训练集:
X={x(1),x(2),...,x(m)}
y={y(1),y(2),...,y(m)} , y{0,1}
LR其实是在线性回归的基础上再加上一个非线性函数 sigmoid 函数,让其更好的适应分类问题,其函数图象如下:

这里写图片描述
LR:

hθ(x)=g(θTx)=11+eθTx

其中 g(z)=11+ez
z+ 时, g(z)=1 , 当 z 时, g(z)=0
g(z) 可以看做是概率,可以比较好的适应分类问题.
P(y=1|x;θ)=hθ(x)
P(y=0|x;θ)=1hθ(x)
P(y|x;θ)=hyθ(1hθ)1y
:
L(θ)=P(y⃗ |x;θ)=i=1mP(y(i)|x(i);θ)=i=1mhyθ(1hθ)1y

:
l(θ)=logL(θ)=i=1m(yiloghθ(x(i))+(1y(i))log(1hθ(x(i))))

然后可以使用梯度下降法或者随机梯度下降法优化问题:
θj:=θjαθjl(θ)

其中:
θjl(θ)=(y1g(θTx)(1y)11g(θTx))θjg(θTx)=(y1g(θTx)(1y)11g(θTx))g(θTx)(1g(θTx))θjθTx=(y(1g(θTx))(1y)g(θTx))xj=(yhθ(x))xj

θj:=θjα(y(i)hθ(x))x(i)j

2. The perceptron learning algrithm

感知器算法与LR类似,同样是在线性上加上一个非线性的函数,但是比LR简单.

g(z)={10z0z<0

再简单列出迭代函数:
θj:=θjα(hθ(x(i))y(i))x(i)j

3.Another algorithm for optimizing (牛顿法)

这里Ng没有讲的特别详细,主要讲解了牛顿法的思想以及推广.
牛顿法:

θ:=θl(θ)l′′(θ)

这里写图片描述
其基本思想就是:
最优化问题中,可以令 f(x)=0 ,这样可以求得极大极小值。举个栗子,上图就是 f(x) 的图像。然后通过某个点的导数,快速得到 f(x)=0 的点。 其实就是通过二阶导数来快速得到 f(x) 的极值。
而使用泰勒展开式展开到二阶:
f(x+Δx)=f(x)+f(x)Δx+f′′(x)Δx2
当且仅当 Δx 无限趋向于0时成立。
f(x)Δx+f′′(x)Δx2=0 与上式等价。
Δx=f(x)f′′(x)
θ:=θl(θ)l′′(θ)

以上是二维的情况,推广到高维:
θ:=θH1θl(θ)
其中 Hij=2l(θ)θiθj

牛顿法与梯度下降法相比,收敛会快很多,毕竟是通过二阶导数来求极值。但是计算代价要高很多,因为要计算 H H1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值