人脸跟踪和高斯分布

原创 2007年10月03日 01:00:00

       高斯模型
这种方法主要是利用了统计学的原理,认为像肤色这样符合正态分布的随机
样本在特征空间中的分布应该符合高斯分布,而高斯分布的数学表达形式简单、
直观,又是统计学中研究得比较深入的一种正态模型,所以对其加以利用具有一
定的优越性。

高斯模型是通过计算像素的概率值构成连续的数据信息并得到一个肤色概率
图,根据数值大小来完成肤色的确认,克服了几何模型的缺点,同时不必考虑神
经网络模型中关于非肤色样本难以准确提取的问题。
本文选取了高斯模型,并用以下二维高斯型函数来表达肤色分布。

                         P( Cb,Cr ) = exp[-0 .5( x - M )t  C( -1)( x -M)]
其中:x 为样本象素在 YCbCr 颜色空间的值,M 为肤色在 YCbCr 颜色空间
的样本均值,C 为肤色相似度模型的协方差矩阵。

x = [Cb, Cr]
M = E(x)
C = E((x – M)(x – M)T) 

 样本统计

 

生成二维高斯混合分布

  • 2016年06月05日 16:42
  • 974B
  • 下载

高斯混合分布

  • 2017年10月29日 11:52
  • 2KB
  • 下载

混合高斯模型:能感知样本分布的聚类

混合高斯是一种经典的聚类算法,拥有良好的性质,根据估计出来的参数,能判断样本数据的分布性质。类似于K_means,但是归类的决定从属一个概率值,并不是是与否的决定。理论上,只要足够多的混合模型,混合高...

三维高斯球形分布

  • 2014年08月29日 09:17
  • 4KB
  • 下载

正态分布(Normal distribution)与高斯分布(Gaussian distribution)

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 ...

EM算法求高斯混合分布java代码

  • 2017年08月04日 21:26
  • 6KB
  • 下载

MapReduce——并行期望最大值化算法(EM在高斯混合分布中的应用)

并行期望最大值化算法(MapReduce)

第12节-K-means算法,高斯混合分布和EM求解算法

NG的第11个视频讲K-means算法,高斯混合分布和EM求解算法
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:人脸跟踪和高斯分布
举报原因:
原因补充:

(最多只允许输入30个字)