人脸跟踪和高斯分布

       高斯模型
这种方法主要是利用了统计学的原理,认为像肤色这样符合正态分布的随机
样本在特征空间中的分布应该符合高斯分布,而高斯分布的数学表达形式简单、
直观,又是统计学中研究得比较深入的一种正态模型,所以对其加以利用具有一
定的优越性。

高斯模型是通过计算像素的概率值构成连续的数据信息并得到一个肤色概率
图,根据数值大小来完成肤色的确认,克服了几何模型的缺点,同时不必考虑神
经网络模型中关于非肤色样本难以准确提取的问题。
本文选取了高斯模型,并用以下二维高斯型函数来表达肤色分布。

                         P( Cb,Cr ) = exp[-0 .5( x - M )t  C( -1)( x -M)]
其中:x 为样本象素在 YCbCr 颜色空间的值,M 为肤色在 YCbCr 颜色空间
的样本均值,C 为肤色相似度模型的协方差矩阵。

x = [Cb, Cr]
M = E(x)
C = E((x – M)(x – M)T) 

 样本统计

 

阅读更多
文章标签: 网络 c
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭