问题:设计一个队列能够在O(1)时间内取得队列的最大值。
分析:
这个问题和设计一个在O(1)时间内取最大值的堆栈看似比较相似,但实现难度要比最大值的堆栈困难一些,开始想模仿最大值堆栈的思想来设计取最大值的堆栈都失败了。实际上这个问题可以拆分成两个问题:
1)设计一个在O(1)时间内取最大值的堆栈;
2)如何使用堆栈来实现一个队列;
如果这两个问题解决了,O(1)时间取最大值的队列也就解决了,这体现了把一个困难的问题,分解为几个比较简单的问题,分步骤处理的思想。
首先看第一个问题:设计一个在O(1)时间内取最大值的堆栈是比较容易的,我们可以使用两个堆栈来保存数据,其中一个保存正常的数据,另一个保存最大值,最大值堆栈在压栈前需要比较待压栈的元素与栈顶元素的大小,如果比栈顶大,那么是一个新的最大值,应该压入栈,否则保持当前最大值不变,也就是不压栈。弹出数据时,如果弹出的值和最大值栈的栈顶元素相同,说明最大值被弹出,此时最大值栈也应该跟着出栈,这样可以保持最大值的更新。
再看第二个问题,可以使用两个栈来实现一个队列,队列push时,将数据压入A栈中,Pop数据时,如果B栈为空,将A栈的数据Pop出来,压入B栈中,再Pop B栈的数据;当队列Pop时,如果B栈的数据不为空,则直接Pop B栈的数据。
取队列的Max就是取A栈和B栈的Max,而A、B栈都是我们刚才实现的最大值栈,他们取最大值的时间都是O(1),因此队列取最大值复杂度也是O(1)。但实现是要注意A、B栈有可能为空,在我们的实现中,对于空栈取最大值是未定义的,因此在对A、B栈取最大值时要先判断是否为空栈。
最后从复杂度来说,队列的Pop操作最坏情况是将A栈的数据都压入B栈,在Pop B栈的数据,最差是O(n),实际多数情况都是O(1)。
总结一下:这个问题,非常明显的体现了如何将一个新问题转成两个已知的简单问题,同时MaxStack的实现封装了复杂性,使得后面的实现更加简单。
设计一个O(1)取最大值的队列

本文探讨如何设计一个能在常数时间内获取最大值的队列,通过将问题分解为两个子问题:1)创建一个O(1)时间获取最大值的堆栈,2)用堆栈实现队列。通过使用两个堆栈,一个用于存储数据,另一个用于跟踪最大值,可以在O(1)时间内获取队列的最大值。队列的push和pop操作在最坏情况下是O(n),但在常见情况下是O(1)。
最低0.47元/天 解锁文章
5022

被折叠的 条评论
为什么被折叠?



