距离度量分类体系

本文提供了一个详细的距离度量分类体系,包括Numerical、Categorical、Binary、Mixed-type和Time Series Data等多种数据类型的距离度量方法,如欧氏距离、曼哈顿距离、马式距离等,并介绍了概率变量的相似性度量。同时,文章还阐述了相似性和不相似性的定义,以及Proximity Matrix和离差矩阵等相关概念。
摘要由CSDN通过智能技术生成

本篇文章并不打算描述所有这些类别,要具体阐述它们的细节和意义实在有点困难。这个大纲的目的,第一:提供一个貌似详细的距离度量的分类体系,列出相关的关键字。 第二:就像一个词典一样供参考和查阅,如果需要了解具体的细节,可以参考wiki或者具体文献。     

大纲:
1. 相似性和不相似性的定义
2. 预备概念
3. 距离度量
    3.1  Numerical Data
          3.1.1 欧拉距离(Euclidean Distance)
          3.1.2 曼哈顿距离(Manhattan Distance)
          3.1.3.最大距离(Maximum Distance)
          3.1.4 明考夫斯基距离(MinKowski Distance)
          3.1.5 马式距离(Mahalanobis Distance)
          3.1.6 平均距离(Average Distance)
          3.1.7 其他距离:Chord Distance,Geodesic distance,…..
    3.2 Categorical Data
         3.2.1. 简单匹配距离(Simple matching Distance)
         3.2.2  其他匹配距离
    3.3. Binary Data
         3.3.1 Jaccard, Dice, Pearson, Yule, Russel-Rao, Sokal-Michener, Rogers-Tanimoto, Rogers-Tanimoto-a, Kulzinsky.
    3.4  Mixed-type Data
    3.5  Time Series Data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值